Skip to content

executor

FractalSlurmSSHExecutor

Bases: SlurmExecutor

FractalSlurmSSHExecutor (inherits from cfut.SlurmExecutor)

FIXME: docstring

Attributes:

Name Type Description
fractal_ssh FractalSSH

FractalSSH connection with custom lock

shutdown_file str
python_remote str

Equal to settings.FRACTAL_SLURM_WORKER_PYTHON

wait_thread_cls

Class for waiting thread

keep_pickle_files bool
workflow_dir_local Path

Directory for both the cfut/SLURM and fractal-server files and logs

workflow_dir_remote Path

Directory for both the cfut/SLURM and fractal-server files and logs

common_script_lines list[str]

Arbitrary script lines that will always be included in the sbatch script

slurm_account Optional[str]
jobs dict[str, tuple[Future, SlurmJob]]
map_jobid_to_slurm_files dict[str, tuple[Future, SlurmJob]]

Dictionary with paths of slurm-related files for active jobs

Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
class FractalSlurmSSHExecutor(SlurmExecutor):
    """
    FractalSlurmSSHExecutor (inherits from cfut.SlurmExecutor)

    FIXME: docstring

    Attributes:
        fractal_ssh: FractalSSH connection with custom lock
        shutdown_file:
        python_remote: Equal to `settings.FRACTAL_SLURM_WORKER_PYTHON`
        wait_thread_cls: Class for waiting thread
        keep_pickle_files:
        workflow_dir_local:
            Directory for both the cfut/SLURM and fractal-server files and logs
        workflow_dir_remote:
            Directory for both the cfut/SLURM and fractal-server files and logs
        common_script_lines:
            Arbitrary script lines that will always be included in the
            sbatch script
        slurm_account:
        jobs:
        map_jobid_to_slurm_files:
            Dictionary with paths of slurm-related files for active jobs
    """

    fractal_ssh: FractalSSH

    workflow_dir_local: Path
    workflow_dir_remote: Path
    shutdown_file: str
    python_remote: str

    wait_thread_cls = FractalSlurmWaitThread
    keep_pickle_files: bool

    common_script_lines: list[str]
    slurm_account: Optional[str]

    jobs: dict[str, tuple[Future, SlurmJob]]
    map_jobid_to_slurm_files_local: dict[str, tuple[str, str, str]]

    def __init__(
        self,
        *,
        # FractalSSH connection
        fractal_ssh: FractalSSH,
        # Folders and files
        workflow_dir_local: Path,
        workflow_dir_remote: Path,
        # Runner options
        keep_pickle_files: bool = False,
        # Monitoring options
        slurm_poll_interval: Optional[int] = None,
        # SLURM submission script options
        common_script_lines: Optional[list[str]] = None,
        slurm_account: Optional[str] = None,
        # Other kwargs are ignored
        **kwargs,
    ):
        """
        Init method for FractalSlurmSSHExecutor

        Note: since we are not using `super().__init__`, we duplicate some
        relevant bits of `cfut.ClusterExecutor.__init__`.

        Args:
            fractal_ssh:
            workflow_dir_local:
            workflow_dir_remote:
            keep_pickle_files:
            slurm_poll_interval:
            common_script_lines:
            slurm_account:
        """

        if kwargs != {}:
            raise ValueError(
                f"FractalSlurmSSHExecutor received unexpected {kwargs=}"
            )

        self.workflow_dir_local = workflow_dir_local
        self.workflow_dir_remote = workflow_dir_remote

        # Relevant bits of cfut.ClusterExecutor.__init__ are copied here,
        # postponing the .start() call to when the callbacks are defined
        self.jobs = {}
        self.job_outfiles = {}
        self.jobs_lock = threading.Lock()
        self.jobs_empty_cond = threading.Condition(self.jobs_lock)
        self.wait_thread = self.wait_thread_cls(self._completion)

        # Set up attributes and methods for self.wait_thread
        # cfut.SlurmWaitThread)
        self.wait_thread.shutdown_callback = self.shutdown
        self.wait_thread.jobs_finished_callback = self._jobs_finished
        if slurm_poll_interval is None:
            settings = Inject(get_settings)
            slurm_poll_interval = settings.FRACTAL_SLURM_POLL_INTERVAL
        elif slurm_poll_interval <= 0:
            raise ValueError(f"Invalid attribute {slurm_poll_interval=}")
        self.wait_thread.slurm_poll_interval = slurm_poll_interval
        self.wait_thread.shutdown_file = (
            self.workflow_dir_local / SHUTDOWN_FILENAME
        ).as_posix()

        # Now start self.wait_thread (note: this must be *after* its callback
        # methods have been defined)
        self.wait_thread.start()

        # Define remote Python interpreter
        settings = Inject(get_settings)
        self.python_remote = settings.FRACTAL_SLURM_WORKER_PYTHON
        if self.python_remote is None:
            self._stop_and_join_wait_thread()
            raise ValueError("FRACTAL_SLURM_WORKER_PYTHON is not set. Exit.")

        # Initialize connection and perform handshake
        self.fractal_ssh = fractal_ssh
        logger.warning(self.fractal_ssh)
        try:
            self.handshake()
        except Exception as e:
            logger.warning(
                "Stop/join waiting thread and then "
                f"re-raise original error {str(e)}"
            )
            self._stop_and_join_wait_thread()
            raise e

        # Set/validate parameters for SLURM submission scripts
        self.slurm_account = slurm_account
        self.common_script_lines = common_script_lines or []
        try:
            self._validate_common_script_lines()
        except Exception as e:
            logger.warning(
                "Stop/join waiting thread and then "
                f"re-raise original error {str(e)}"
            )
            self._stop_and_join_wait_thread()
            raise e

        # Set/initialize some more options
        self.keep_pickle_files = keep_pickle_files
        self.map_jobid_to_slurm_files_local = {}

    def _validate_common_script_lines(self):
        """
        Check that SLURM account is not set in `self.common_script_lines`.
        """
        try:
            invalid_line = next(
                line
                for line in self.common_script_lines
                if line.startswith("#SBATCH --account=")
            )
            raise RuntimeError(
                "Invalid line in `FractalSlurmSSHExecutor."
                "common_script_lines`: "
                f"'{invalid_line}'.\n"
                "SLURM account must be set via the request body of the "
                "apply-workflow endpoint, or by modifying the user properties."
            )
        except StopIteration:
            pass

    def _cleanup(self, jobid: str) -> None:
        """
        Given a job ID, perform any necessary cleanup after the job has
        finished.
        """
        with self.jobs_lock:
            self.map_jobid_to_slurm_files_local.pop(jobid)

    def submit(
        self,
        fun: Callable[..., Any],
        *fun_args: Sequence[Any],
        slurm_config: SlurmConfig,
        task_files: TaskFiles,
        **fun_kwargs: dict,
    ) -> Future:
        """
        Submit a function for execution on `FractalSlurmSSHExecutor`

        Arguments:
            fun: The function to be executed
            fun_args: Function positional arguments
            fun_kwargs: Function keyword arguments
            slurm_config:
                A `SlurmConfig` object.
            task_files:
                A `TaskFiles` object.

        Returns:
            Future representing the execution of the current SLURM job.
        """

        # Do not continue if auxiliary thread was shut down
        if self.wait_thread.shutdown:
            error_msg = "Cannot call `submit` method after executor shutdown"
            logger.warning(error_msg)
            raise JobExecutionError(info=error_msg)

        # Set slurm_file_prefix
        slurm_file_prefix = task_files.file_prefix

        # Include common_script_lines in extra_lines
        logger.debug(
            f"Adding {self.common_script_lines=} to "
            f"{slurm_config.extra_lines=}, from submit method."
        )
        current_extra_lines = slurm_config.extra_lines or []
        slurm_config.extra_lines = (
            current_extra_lines + self.common_script_lines
        )

        # Adapt slurm_config to the fact that this is a single-task SlurmJob
        # instance
        slurm_config.tasks_per_job = 1
        slurm_config.parallel_tasks_per_job = 1

        job = self._prepare_job(
            fun,
            slurm_config=slurm_config,
            slurm_file_prefix=slurm_file_prefix,
            task_files=task_files,
            single_task_submission=True,
            args=fun_args,
            kwargs=fun_kwargs,
        )
        self._put_subfolder_sftp(jobs=[job])
        future, job_id_str = self._submit_job(job)
        self.wait_thread.wait(job_id=job_id_str)
        return future

    def map(
        self,
        fn: Callable[..., Any],
        iterable: list[Sequence[Any]],
        *,
        slurm_config: SlurmConfig,
        task_files: TaskFiles,
    ):
        """
        Return an iterator with the results of several execution of a function

        This function is based on `concurrent.futures.Executor.map` from Python
        Standard Library 3.11.
        Original Copyright 2009 Brian Quinlan. All Rights Reserved. Licensed to
        PSF under a Contributor Agreement.

        Main modifications from the PSF function:

        1. Only `fn` and `iterable` can be assigned as positional arguments;
        2. `*iterables` argument replaced with a single `iterable`;
        3. `timeout` and `chunksize` arguments are not supported.

        Arguments:
            fn:
                The function to be executed
            iterable:
                An iterable such that each element is the list of arguments to
                be passed to `fn`, as in `fn(*args)`.
            slurm_config:
                A `SlurmConfig` object.
            task_files:
                A `TaskFiles` object.
        """

        # Do not continue if auxiliary thread was shut down
        if self.wait_thread.shutdown:
            error_msg = "Cannot call `map` method after executor shutdown"
            logger.warning(error_msg)
            raise JobExecutionError(info=error_msg)

        def _result_or_cancel(fut):
            """
            This function is based on the Python Standard Library 3.11.
            Original Copyright 2009 Brian Quinlan. All Rights Reserved.
            Licensed to PSF under a Contributor Agreement.
            """
            try:
                try:
                    return fut.result()
                finally:
                    fut.cancel()
            finally:
                # Break a reference cycle with the exception in
                # self._exception
                del fut

        # Include common_script_lines in extra_lines
        logger.debug(
            f"Adding {self.common_script_lines=} to "
            f"{slurm_config.extra_lines=}, from map method."
        )
        current_extra_lines = slurm_config.extra_lines or []
        slurm_config.extra_lines = (
            current_extra_lines + self.common_script_lines
        )

        # Set file prefixes
        general_slurm_file_prefix = str(task_files.task_order)

        # Transform iterable into a list and count its elements
        list_args = list(iterable)
        tot_tasks = len(list_args)

        # Set/validate parameters for task batching
        tasks_per_job, parallel_tasks_per_job = heuristics(
            # Number of parallel components (always known)
            tot_tasks=len(list_args),
            # Optional WorkflowTask attributes:
            tasks_per_job=slurm_config.tasks_per_job,
            parallel_tasks_per_job=slurm_config.parallel_tasks_per_job,  # noqa
            # Task requirements (multiple possible sources):
            cpus_per_task=slurm_config.cpus_per_task,
            mem_per_task=slurm_config.mem_per_task_MB,
            # Fractal configuration variables (soft/hard limits):
            target_cpus_per_job=slurm_config.target_cpus_per_job,
            target_mem_per_job=slurm_config.target_mem_per_job,
            target_num_jobs=slurm_config.target_num_jobs,
            max_cpus_per_job=slurm_config.max_cpus_per_job,
            max_mem_per_job=slurm_config.max_mem_per_job,
            max_num_jobs=slurm_config.max_num_jobs,
        )
        slurm_config.parallel_tasks_per_job = parallel_tasks_per_job
        slurm_config.tasks_per_job = tasks_per_job

        # Divide arguments in batches of `n_tasks_per_script` tasks each
        args_batches = []
        batch_size = tasks_per_job
        for ind_chunk in range(0, tot_tasks, batch_size):
            args_batches.append(
                list_args[ind_chunk : ind_chunk + batch_size]  # noqa
            )
        if len(args_batches) != math.ceil(tot_tasks / tasks_per_job):
            raise RuntimeError("Something wrong here while batching tasks")

        # Fetch configuration variable
        settings = Inject(get_settings)
        FRACTAL_SLURM_SBATCH_SLEEP = settings.FRACTAL_SLURM_SBATCH_SLEEP

        logger.debug("[map] Job preparation - START")
        current_component_index = 0
        jobs_to_submit = []
        for ind_batch, batch in enumerate(args_batches):
            batch_size = len(batch)
            this_slurm_file_prefix = (
                f"{general_slurm_file_prefix}_batch_{ind_batch:06d}"
            )
            new_job_to_submit = self._prepare_job(
                fn,
                slurm_config=slurm_config,
                slurm_file_prefix=this_slurm_file_prefix,
                task_files=task_files,
                single_task_submission=False,
                components=batch,
            )
            jobs_to_submit.append(new_job_to_submit)
            current_component_index += batch_size
        logger.debug("[map] Job preparation - END")

        self._put_subfolder_sftp(jobs=jobs_to_submit)

        # Construct list of futures (one per SLURM job, i.e. one per batch)
        # FIXME SSH: we may create a single `_submit_many_jobs` method to
        # reduce the number of commands run over SSH
        logger.debug("[map] Job submission - START")
        fs = []
        job_ids = []
        for job in jobs_to_submit:
            future, job_id = self._submit_job(job)
            job_ids.append(job_id)
            fs.append(future)
            time.sleep(FRACTAL_SLURM_SBATCH_SLEEP)
        for job_id in job_ids:
            self.wait_thread.wait(job_id=job_id)
        logger.debug("[map] Job submission - END")

        # Yield must be hidden in closure so that the futures are submitted
        # before the first iterator value is required.
        # NOTE: In this custom map() method, _result_or_cancel(fs.pop()) is an
        # iterable of results (if successful), and we should yield its elements
        # rather than the whole iterable.
        def result_iterator():
            """
            This function is based on the Python Standard Library 3.11.
            Original Copyright 2009 Brian Quinlan. All Rights Reserved.
            Licensed to PSF under a Contributor Agreement.
            """
            try:
                # reverse to keep finishing order
                fs.reverse()
                while fs:
                    # Careful not to keep a reference to the popped future
                    results = _result_or_cancel(fs.pop())
                    for res in results:
                        yield res
            finally:
                for future in fs:
                    future.cancel()

        return result_iterator()

    def _prepare_job(
        self,
        fun: Callable[..., Any],
        slurm_file_prefix: str,
        task_files: TaskFiles,
        slurm_config: SlurmConfig,
        single_task_submission: bool = False,
        args: Optional[Sequence[Any]] = None,
        kwargs: Optional[dict] = None,
        components: Optional[list[Any]] = None,
    ) -> SlurmJob:
        """
        Prepare a SLURM job locally, without submitting it

        This function prepares and writes the local submission script, but it
        does not transfer it to the SLURM cluster.

        NOTE: this method has different behaviors when it is called from the
        `self.submit` or `self.map` methods (which is also encoded in
        `single_task_submission`):

        * When called from `self.submit`, it supports general `args` and
          `kwargs` arguments;
        * When called from `self.map`, there cannot be any `args` or `kwargs`
          argument, but there must be a `components` argument.

        Arguments:
            fun:
            slurm_file_prefix:
            task_files:
            slurm_config:
            single_task_submission:
            args:
            kwargs:
            components:

        Returns:
            SlurmJob object
        """

        # Inject SLURM account (if set) into slurm_config
        if self.slurm_account:
            slurm_config.account = self.slurm_account

        # Define slurm-job-related files
        if single_task_submission:
            if components is not None:
                raise ValueError(
                    f"{single_task_submission=} but components is not None"
                )
            job = SlurmJob(
                slurm_file_prefix=slurm_file_prefix,
                num_tasks_tot=1,
                slurm_config=slurm_config,
            )
            if job.num_tasks_tot > 1:
                raise ValueError(
                    "{single_task_submission=} but {job.num_tasks_tot=}"
                )
            job.single_task_submission = True
            job.wftask_file_prefixes = (task_files.file_prefix,)
            job.wftask_subfolder_name = task_files.subfolder_name

        else:
            if not components or len(components) < 1:
                raise ValueError(
                    "In FractalSlurmSSHExecutor._submit_job, given "
                    f"{components=}."
                )
            num_tasks_tot = len(components)
            job = SlurmJob(
                slurm_file_prefix=slurm_file_prefix,
                num_tasks_tot=num_tasks_tot,
                slurm_config=slurm_config,
            )

            _prefixes = []
            _subfolder_names = []
            for component in components:
                if isinstance(component, dict):
                    actual_component = component.get(_COMPONENT_KEY_, None)
                else:
                    actual_component = component
                _task_file_paths = get_task_file_paths(
                    workflow_dir_local=task_files.workflow_dir_local,
                    workflow_dir_remote=task_files.workflow_dir_remote,
                    task_name=task_files.task_name,
                    task_order=task_files.task_order,
                    component=actual_component,
                )
                _prefixes.append(_task_file_paths.file_prefix)
                _subfolder_names.append(_task_file_paths.subfolder_name)
            job.wftask_file_prefixes = tuple(_prefixes)

            # Check that all components share the same subfolder
            num_subfolders = len(set(_subfolder_names))
            if num_subfolders != 1:
                error_msg_short = (
                    f"[_submit_job] Subfolder list has {num_subfolders} "
                    "different values, but it must have only one (since "
                    "workflow tasks are executed one by one)."
                )
                error_msg_detail = (
                    "[_submit_job] Current unique subfolder names: "
                    f"{set(_subfolder_names)}"
                )
                logger.error(error_msg_short)
                logger.error(error_msg_detail)
                raise ValueError(error_msg_short)
            job.wftask_subfolder_name = _subfolder_names[0]

        # Check that server-side subfolder exists
        subfolder_path = self.workflow_dir_local / job.wftask_subfolder_name
        if not subfolder_path.exists():
            raise FileNotFoundError(
                f"Missing folder {subfolder_path.as_posix()}."
            )

        job.input_pickle_files_local = tuple(
            get_pickle_file_path(
                arg=job.workerids[ind],
                workflow_dir=self.workflow_dir_local,
                subfolder_name=job.wftask_subfolder_name,
                in_or_out="in",
                prefix=job.wftask_file_prefixes[ind],
            )
            for ind in range(job.num_tasks_tot)
        )

        job.input_pickle_files_remote = tuple(
            get_pickle_file_path(
                arg=job.workerids[ind],
                workflow_dir=self.workflow_dir_remote,
                subfolder_name=job.wftask_subfolder_name,
                in_or_out="in",
                prefix=job.wftask_file_prefixes[ind],
            )
            for ind in range(job.num_tasks_tot)
        )
        job.output_pickle_files_local = tuple(
            get_pickle_file_path(
                arg=job.workerids[ind],
                workflow_dir=self.workflow_dir_local,
                subfolder_name=job.wftask_subfolder_name,
                in_or_out="out",
                prefix=job.wftask_file_prefixes[ind],
            )
            for ind in range(job.num_tasks_tot)
        )
        job.output_pickle_files_remote = tuple(
            get_pickle_file_path(
                arg=job.workerids[ind],
                workflow_dir=self.workflow_dir_remote,
                subfolder_name=job.wftask_subfolder_name,
                in_or_out="out",
                prefix=job.wftask_file_prefixes[ind],
            )
            for ind in range(job.num_tasks_tot)
        )
        # define slurm-job file local/remote paths
        job.slurm_script_local = get_slurm_script_file_path(
            workflow_dir=self.workflow_dir_local,
            subfolder_name=job.wftask_subfolder_name,
            prefix=job.slurm_file_prefix,
        )
        job.slurm_script_remote = get_slurm_script_file_path(
            workflow_dir=self.workflow_dir_remote,
            subfolder_name=job.wftask_subfolder_name,
            prefix=job.slurm_file_prefix,
        )
        job.slurm_stdout_local = get_slurm_file_path(
            workflow_dir=self.workflow_dir_local,
            subfolder_name=job.wftask_subfolder_name,
            out_or_err="out",
            prefix=job.slurm_file_prefix,
        )
        job.slurm_stdout_remote = get_slurm_file_path(
            workflow_dir=self.workflow_dir_remote,
            subfolder_name=job.wftask_subfolder_name,
            out_or_err="out",
            prefix=job.slurm_file_prefix,
        )
        job.slurm_stderr_local = get_slurm_file_path(
            workflow_dir=self.workflow_dir_local,
            subfolder_name=job.wftask_subfolder_name,
            out_or_err="err",
            prefix=job.slurm_file_prefix,
        )
        job.slurm_stderr_remote = get_slurm_file_path(
            workflow_dir=self.workflow_dir_remote,
            subfolder_name=job.wftask_subfolder_name,
            out_or_err="err",
            prefix=job.slurm_file_prefix,
        )

        # Dump serialized versions+function+args+kwargs to pickle file(s)
        versions = get_versions()
        if job.single_task_submission:
            _args = args or []
            _kwargs = kwargs or {}
            funcser = cloudpickle.dumps((versions, fun, _args, _kwargs))
            with open(job.input_pickle_files_local[0], "wb") as f:
                f.write(funcser)
        else:
            for ind_component, component in enumerate(components):
                _args = [component]
                _kwargs = {}
                funcser = cloudpickle.dumps((versions, fun, _args, _kwargs))
                with open(
                    job.input_pickle_files_local[ind_component], "wb"
                ) as f:
                    f.write(funcser)

        # Prepare commands to be included in SLURM submission script
        cmdlines = []
        for ind_task in range(job.num_tasks_tot):
            input_pickle_file = job.input_pickle_files_remote[ind_task]
            output_pickle_file = job.output_pickle_files_remote[ind_task]
            cmdlines.append(
                (
                    f"{self.python_remote}"
                    " -m fractal_server.app.runner.executors.slurm.remote "
                    f"--input-file {input_pickle_file} "
                    f"--output-file {output_pickle_file}"
                )
            )

        # Prepare SLURM submission script
        sbatch_script_content = self._prepare_sbatch_script(
            slurm_config=job.slurm_config,
            list_commands=cmdlines,
            slurm_out_path=str(job.slurm_stdout_remote),
            slurm_err_path=str(job.slurm_stderr_remote),
        )
        with job.slurm_script_local.open("w") as f:
            f.write(sbatch_script_content)

        return job

    def _put_subfolder_sftp(self, jobs: list[SlurmJob]) -> None:
        """
        Transfer the jobs subfolder to the remote host.

        Arguments:
            jobs: The list of `SlurmJob` objects associated to a given
                subfolder.
        """

        # Check that the subfolder is unique
        subfolder_names = [job.wftask_subfolder_name for job in jobs]
        if len(set(subfolder_names)) > 1:
            raise ValueError(
                "[_put_subfolder] Invalid list of jobs, "
                f"{set(subfolder_names)=}."
            )
        subfolder_name = subfolder_names[0]

        # Create compressed subfolder archive (locally)
        local_subfolder = self.workflow_dir_local / subfolder_name
        tarfile_path_local = compress_folder(local_subfolder)
        tarfile_name = Path(tarfile_path_local).name
        logger.info(f"Subfolder archive created at {tarfile_path_local}")
        tarfile_path_remote = (
            self.workflow_dir_remote / tarfile_name
        ).as_posix()

        # Transfer archive
        t_0_put = time.perf_counter()
        self.fractal_ssh.send_file(
            local=tarfile_path_local,
            remote=tarfile_path_remote,
        )
        t_1_put = time.perf_counter()
        logger.info(
            f"Subfolder archive transferred to {tarfile_path_remote}"
            f" - elapsed: {t_1_put - t_0_put:.3f} s"
        )
        # Uncompress archive (remotely)
        tar_command = (
            f"{self.python_remote} -m "
            "fractal_server.app.runner.extract_archive "
            f"{tarfile_path_remote}"
        )
        self.fractal_ssh.run_command(cmd=tar_command)

        # Remove local version
        t_0_rm = time.perf_counter()
        Path(tarfile_path_local).unlink()
        t_1_rm = time.perf_counter()
        logger.info(
            f"Local archive removed - elapsed: {t_1_rm - t_0_rm:.3f} s"
        )

    def _submit_job(self, job: SlurmJob) -> tuple[Future, str]:
        """
        Submit a job to SLURM via SSH.

        This method must always be called after `self._put_subfolder`.

        Arguments:
            job: The `SlurmJob` object to submit.
        """

        # Prevent calling sbatch if auxiliary thread was shut down
        if self.wait_thread.shutdown:
            error_msg = (
                "Cannot call `_submit_job` method after executor shutdown"
            )
            logger.warning(error_msg)
            raise JobExecutionError(info=error_msg)

        # Submit job to SLURM, and get jobid
        sbatch_command = f"sbatch --parsable {job.slurm_script_remote}"
        pre_submission_cmds = job.slurm_config.pre_submission_commands
        if len(pre_submission_cmds) == 0:
            sbatch_stdout = self.fractal_ssh.run_command(cmd=sbatch_command)
        else:
            logger.debug(f"Now using {pre_submission_cmds=}")
            script_lines = pre_submission_cmds + [sbatch_command]
            script_content = "\n".join(script_lines)
            script_content = f"{script_content}\n"
            script_path_remote = (
                f"{job.slurm_script_remote.as_posix()}_wrapper.sh"
            )
            self.fractal_ssh.write_remote_file(
                path=script_path_remote, content=script_content
            )
            cmd = f"bash {script_path_remote}"
            sbatch_stdout = self.fractal_ssh.run_command(cmd=cmd)

        # Extract SLURM job ID from stdout
        try:
            stdout = sbatch_stdout.strip("\n")
            jobid = int(stdout)
        except ValueError as e:
            error_msg = (
                f"Submit command `{sbatch_command}` returned "
                f"`{stdout=}` which cannot be cast to an integer "
                f"SLURM-job ID.\n"
                f"Note that {pre_submission_cmds=}.\n"
                f"Original error:\n{str(e)}"
            )
            logger.error(error_msg)
            raise JobExecutionError(info=error_msg)
        job_id_str = str(jobid)

        # Plug job id in stdout/stderr SLURM file paths (local and remote)
        def _replace_job_id(_old_path: Path) -> Path:
            return Path(_old_path.as_posix().replace("%j", job_id_str))

        job.slurm_stdout_local = _replace_job_id(job.slurm_stdout_local)
        job.slurm_stdout_remote = _replace_job_id(job.slurm_stdout_remote)
        job.slurm_stderr_local = _replace_job_id(job.slurm_stderr_local)
        job.slurm_stderr_remote = _replace_job_id(job.slurm_stderr_remote)

        # Add the SLURM script/out/err paths to map_jobid_to_slurm_files (this
        # must be after the `sbatch` call, so that "%j" has already been
        # replaced with the job ID)
        with self.jobs_lock:
            self.map_jobid_to_slurm_files_local[job_id_str] = (
                job.slurm_script_local.as_posix(),
                job.slurm_stdout_local.as_posix(),
                job.slurm_stderr_local.as_posix(),
            )

        # Create future
        future = Future()
        with self.jobs_lock:
            self.jobs[job_id_str] = (future, job)
        return future, job_id_str

    def _prepare_JobExecutionError(
        self, jobid: str, info: str
    ) -> JobExecutionError:
        """
        Prepare the `JobExecutionError` for a given job

        This method creates a `JobExecutionError` object and sets its attribute
        to the appropriate SLURM-related file names. Note that the SLURM files
        are the local ones (i.e. the ones in `self.workflow_dir_local`).

        Arguments:
            jobid:
                ID of the SLURM job.
            info:
        """
        # Extract SLURM file paths
        with self.jobs_lock:
            (
                slurm_script_file,
                slurm_stdout_file,
                slurm_stderr_file,
            ) = self.map_jobid_to_slurm_files_local[jobid]
        # Construct JobExecutionError exception
        job_exc = JobExecutionError(
            cmd_file=slurm_script_file,
            stdout_file=slurm_stdout_file,
            stderr_file=slurm_stderr_file,
            info=info,
        )
        return job_exc

    def _missing_pickle_error_msg(self, out_path: Path) -> str:
        settings = Inject(get_settings)
        info = (
            "Output pickle file of the FractalSlurmSSHExecutor "
            "job not found.\n"
            f"Expected file path: {out_path.as_posix()}n"
            "Here are some possible reasons:\n"
            "1. The SLURM job was scancel-ed, either by the user "
            "or due to an error (e.g. an out-of-memory or timeout "
            "error). Note that if the scancel took place before "
            "the job started running, the SLURM out/err files "
            "will be empty.\n"
            "2. Some error occurred upon writing the file to disk "
            "(e.g. because there is not enough space on disk, or "
            "due to an overloaded NFS filesystem). "
            "Note that the server configuration has "
            "FRACTAL_SLURM_ERROR_HANDLING_INTERVAL="
            f"{settings.FRACTAL_SLURM_ERROR_HANDLING_INTERVAL} "
            "seconds.\n"
        )
        return info

    def _handle_remaining_jobs(
        self,
        remaining_futures: list[Future],
        remaining_job_ids: list[str],
        remaining_jobs: list[SlurmJob],
    ) -> None:
        """
        Helper function used within _completion, when looping over a list of
        several jobs/futures.
        """
        for future in remaining_futures:
            try:
                future.cancel()
            except InvalidStateError:
                pass
        for job_id in remaining_job_ids:
            self._cleanup(job_id)
        if not self.keep_pickle_files:
            for job in remaining_jobs:
                for path in job.output_pickle_files_local:
                    path.unlink()
                for path in job.input_pickle_files_local:
                    path.unlink()

    def _completion(self, job_ids: list[str]) -> None:
        """
        Callback function to be executed whenever a job finishes.

        This function is executed by self.wait_thread (triggered by either
        finding an existing output pickle file `out_path` or finding that the
        SLURM job is over). Since this takes place on a different thread,
        failures may not be captured by the main thread; we use a broad
        try/except block, so that those exceptions are reported to the main
        thread via `fut.set_exception(...)`.

        Arguments:
            job_ids: IDs of the SLURM jobs to handle.
        """
        # Handle all uncaught exceptions in this broad try/except block
        try:
            logger.info(
                f"[FractalSlurmSSHExecutor._completion] START, for {job_ids=}."
            )

            # Loop over all job_ids, and fetch future and job objects
            futures: list[Future] = []
            jobs: list[SlurmJob] = []
            with self.jobs_lock:
                for job_id in job_ids:
                    future, job = self.jobs.pop(job_id)
                    futures.append(future)
                    jobs.append(job)
                if not self.jobs:
                    self.jobs_empty_cond.notify_all()

            # Fetch subfolder from remote host
            self._get_subfolder_sftp(jobs=jobs)

            # First round of checking whether all output files exist
            missing_out_paths = []
            for job in jobs:
                for ind_out_path, out_path in enumerate(
                    job.output_pickle_files_local
                ):
                    if not out_path.exists():
                        missing_out_paths.append(out_path)
            num_missing = len(missing_out_paths)
            if num_missing > 0:
                # Output pickle files may be missing e.g. because of some slow
                # filesystem operation; wait some time before re-trying
                settings = Inject(get_settings)
                sleep_time = settings.FRACTAL_SLURM_ERROR_HANDLING_INTERVAL
                logger.info(
                    f"{num_missing} output pickle files are missing; "
                    f"sleep {sleep_time} seconds."
                )
                for missing_file in missing_out_paths:
                    logger.debug(f"Missing output pickle file: {missing_file}")
                time.sleep(sleep_time)

            # Handle all jobs
            for ind_job, job_id in enumerate(job_ids):
                # Retrieve job and future objects
                job = jobs[ind_job]
                future = futures[ind_job]
                remaining_job_ids = job_ids[ind_job + 1 :]  # noqa: E203
                remaining_futures = futures[ind_job + 1 :]  # noqa: E203

                outputs = []

                for ind_out_path, out_path in enumerate(
                    job.output_pickle_files_local
                ):
                    in_path = job.input_pickle_files_local[ind_out_path]
                    if not out_path.exists():
                        # Output pickle file is still missing
                        info = self._missing_pickle_error_msg(out_path)
                        job_exc = self._prepare_JobExecutionError(
                            job_id, info=info
                        )
                        try:
                            future.set_exception(job_exc)
                            self._handle_remaining_jobs(
                                remaining_futures=remaining_futures,
                                remaining_job_ids=remaining_job_ids,
                            )
                            logger.info(
                                "[FractalSlurmSSHExecutor._completion] END, "
                                f"for {job_ids=}, with JobExecutionError due "
                                f"to missing {out_path.as_posix()}."
                            )
                            return
                        except InvalidStateError:
                            logger.warning(
                                f"Future {future} (SLURM job ID: {job_id}) "
                                "was already cancelled."
                            )
                            if not self.keep_pickle_files:
                                in_path.unlink()
                            self._cleanup(job_id)
                            self._handle_remaining_jobs(
                                remaining_futures=remaining_futures,
                                remaining_job_ids=remaining_job_ids,
                            )
                            logger.info(
                                "[FractalSlurmSSHExecutor._completion] END, "
                                f"for {job_ids=}, with JobExecutionError/"
                                "InvalidStateError due to "
                                f"missing {out_path.as_posix()}."
                            )
                            return

                    # Read the task output
                    with out_path.open("rb") as f:
                        outdata = f.read()
                    # Note: output can be either the task result (typically a
                    # dictionary) or an ExceptionProxy object; in the latter
                    # case, the ExceptionProxy definition is also part of the
                    # pickle file (thanks to cloudpickle.dumps).
                    success, output = cloudpickle.loads(outdata)
                    try:
                        if success:
                            outputs.append(output)
                        else:
                            proxy = output
                            if proxy.exc_type_name == "JobExecutionError":
                                job_exc = self._prepare_JobExecutionError(
                                    job_id, info=proxy.kwargs.get("info", None)
                                )
                                future.set_exception(job_exc)
                                self._handle_remaining_jobs(
                                    remaining_futures=remaining_futures,
                                    remaining_job_ids=remaining_job_ids,
                                )
                                return
                            else:
                                # This branch catches both TaskExecutionError's
                                # (coming from the typical fractal-server
                                # execution of tasks, and with additional
                                # fractal-specific kwargs) or arbitrary
                                # exceptions (coming from a direct use of
                                # FractalSlurmSSHExecutor, possibly outside
                                # fractal-server)
                                kwargs = {}
                                for key in [
                                    "workflow_task_id",
                                    "workflow_task_order",
                                    "task_name",
                                ]:
                                    if key in proxy.kwargs.keys():
                                        kwargs[key] = proxy.kwargs[key]
                                exc = TaskExecutionError(proxy.tb, **kwargs)
                                future.set_exception(exc)
                                self._handle_remaining_jobs(
                                    remaining_futures=remaining_futures,
                                    remaining_job_ids=remaining_job_ids,
                                )
                                return
                        if not self.keep_pickle_files:
                            out_path.unlink()
                    except InvalidStateError:
                        logger.warning(
                            f"Future {future} (SLURM job ID: {job_id}) was "
                            "already cancelled, exit from "
                            "FractalSlurmSSHExecutor._completion."
                        )
                        if not self.keep_pickle_files:
                            out_path.unlink()
                            in_path.unlink()

                        self._cleanup(job_id)
                        self._handle_remaining_jobs(
                            remaining_futures=remaining_futures,
                            remaining_job_ids=remaining_job_ids,
                        )
                        return

                    # Clean up input pickle file
                    if not self.keep_pickle_files:
                        in_path.unlink()
                self._cleanup(job_id)
                if job.single_task_submission:
                    future.set_result(outputs[0])
                else:
                    future.set_result(outputs)

        except Exception as e:
            logger.warning(
                "[FractalSlurmSSHExecutor._completion] "
                f"An exception took place: {str(e)}."
            )
            for future in futures:
                try:
                    logger.info(f"Set exception for {future=}")
                    future.set_exception(e)
                except InvalidStateError:
                    logger.info(f"Future {future} was already cancelled.")
            logger.info(
                f"[FractalSlurmSSHExecutor._completion] END, for {job_ids=}, "
                "from within exception handling."
            )
            return

    def _get_subfolder_sftp(self, jobs: list[SlurmJob]) -> None:
        """
        Fetch a remote folder via tar+sftp+tar

        Arguments:
            jobs:
                List of `SlurmJob` object (needed for their prefix-related
                attributes).
        """

        # Check that the subfolder is unique
        subfolder_names = [job.wftask_subfolder_name for job in jobs]
        if len(set(subfolder_names)) > 1:
            raise ValueError(
                "[_put_subfolder] Invalid list of jobs, "
                f"{set(subfolder_names)=}."
            )
        subfolder_name = subfolder_names[0]

        t_0 = time.perf_counter()
        logger.debug("[_get_subfolder_sftp] Start")
        tarfile_path_local = (
            self.workflow_dir_local / f"{subfolder_name}.tar.gz"
        ).as_posix()
        tarfile_path_remote = (
            self.workflow_dir_remote / f"{subfolder_name}.tar.gz"
        ).as_posix()

        # Remove remote tarfile
        rm_command = f"rm {tarfile_path_remote}"
        self.fractal_ssh.run_command(cmd=rm_command)

        # Create remote tarfile
        tar_command = (
            f"{self.python_remote} "
            "-m fractal_server.app.runner.compress_folder "
            f"{(self.workflow_dir_remote / subfolder_name).as_posix()} "
            "--remote-to-local"
        )
        stdout = self.fractal_ssh.run_command(cmd=tar_command)
        print(stdout)

        # Fetch tarfile
        t_0_get = time.perf_counter()
        self.fractal_ssh.fetch_file(
            remote=tarfile_path_remote,
            local=tarfile_path_local,
        )
        t_1_get = time.perf_counter()
        logger.info(
            f"Subfolder archive transferred back to {tarfile_path_local}"
            f" - elapsed: {t_1_get - t_0_get:.3f} s"
        )

        # Extract tarfile locally
        extract_archive(Path(tarfile_path_local))

        # Remove local tarfile
        if Path(tarfile_path_local).exists():
            logger.warning(f"Remove existing file {tarfile_path_local}.")
            Path(tarfile_path_local).unlink()

        t_1 = time.perf_counter()
        logger.info("[_get_subfolder_sftp] End - " f"elapsed: {t_1-t_0:.3f} s")

    def _prepare_sbatch_script(
        self,
        *,
        list_commands: list[str],
        slurm_out_path: str,
        slurm_err_path: str,
        slurm_config: SlurmConfig,
    ):
        num_tasks_max_running = slurm_config.parallel_tasks_per_job
        mem_per_task_MB = slurm_config.mem_per_task_MB

        # Set ntasks
        ntasks = min(len(list_commands), num_tasks_max_running)
        if len(list_commands) < num_tasks_max_running:
            ntasks = len(list_commands)
            slurm_config.parallel_tasks_per_job = ntasks
            logger.debug(
                f"{len(list_commands)=} is smaller than "
                f"{num_tasks_max_running=}. Setting {ntasks=}."
            )

        # Prepare SLURM preamble based on SlurmConfig object
        script_lines = slurm_config.to_sbatch_preamble(
            remote_export_dir=self.workflow_dir_remote.as_posix()
        )

        # Extend SLURM preamble with variable which are not in SlurmConfig, and
        # fix their order
        script_lines.extend(
            [
                f"#SBATCH --err={slurm_err_path}",
                f"#SBATCH --out={slurm_out_path}",
                f"#SBATCH -D {self.workflow_dir_remote}",
            ]
        )
        script_lines = slurm_config.sort_script_lines(script_lines)
        logger.debug(script_lines)

        # Always print output of `pwd`
        script_lines.append('echo "Working directory (pwd): `pwd`"\n')

        # Complete script preamble
        script_lines.append("\n")

        # Include command lines
        tmp_list_commands = copy(list_commands)
        while tmp_list_commands:
            if tmp_list_commands:
                cmd = tmp_list_commands.pop(0)  # take first element
                script_lines.append(
                    "srun --ntasks=1 --cpus-per-task=$SLURM_CPUS_PER_TASK "
                    f"--mem={mem_per_task_MB}MB "
                    f"{cmd} &"
                )
        script_lines.append("wait\n")

        script = "\n".join(script_lines)
        return script

    def shutdown(self, wait=True, *, cancel_futures=False):
        """
        Clean up all executor variables. Note that this function is executed on
        the self.wait_thread thread, see _completion.
        """

        # Redudantly set thread shutdown attribute to True
        self.wait_thread.shutdown = True

        logger.debug("Executor shutdown: start")

        # Handle all job futures
        slurm_jobs_to_scancel = []
        with self.jobs_lock:
            while self.jobs:
                jobid, fut_and_job = self.jobs.popitem()
                slurm_jobs_to_scancel.append(jobid)
                fut = fut_and_job[0]
                self.map_jobid_to_slurm_files_local.pop(jobid)
                if not fut.cancelled():
                    fut.set_exception(
                        JobExecutionError(
                            "Job cancelled due to executor shutdown."
                        )
                    )
                    fut.cancel()

        # Cancel SLURM jobs
        if slurm_jobs_to_scancel:
            scancel_string = " ".join(slurm_jobs_to_scancel)
            logger.warning(f"Now scancel-ing SLURM jobs {scancel_string}")
            scancel_command = f"scancel {scancel_string}"
            self.fractal_ssh.run_command(cmd=scancel_command)
        logger.debug("Executor shutdown: end")

    def _stop_and_join_wait_thread(self):
        self.wait_thread.stop()
        self.wait_thread.join()

    def __exit__(self, *args, **kwargs):
        """
        See
        https://github.com/fractal-analytics-platform/fractal-server/issues/1508
        """
        logger.debug(
            "[FractalSlurmSSHExecutor.__exit__] Stop and join `wait_thread`"
        )
        self._stop_and_join_wait_thread()
        logger.debug("[FractalSlurmSSHExecutor.__exit__] End")

    def run_squeue(self, job_ids):
        squeue_command = (
            "squeue "
            "--noheader "
            "--format='%i %T' "
            "--jobs __JOBS__ "
            "--states=all"
        )
        job_ids = ",".join([str(j) for j in job_ids])
        squeue_command = squeue_command.replace("__JOBS__", job_ids)
        stdout = self.fractal_ssh.run_command(cmd=squeue_command)
        return stdout

    def _jobs_finished(self, job_ids: list[str]) -> set[str]:
        """
        Check which ones of the given Slurm jobs already finished

        The function is based on the `_jobs_finished` function from
        clusterfutures (version 0.5).
        Original Copyright: 2022 Adrian Sampson
        (released under the MIT licence)
        """

        from cfut.slurm import STATES_FINISHED

        logger.debug(
            f"[FractalSlurmSSHExecutor._jobs_finished] START ({job_ids=})"
        )

        # If there is no Slurm job to check, return right away
        if not job_ids:
            logger.debug(
                "[FractalSlurmSSHExecutor._jobs_finished] "
                "No jobs provided, return."
            )
            return set()

        try:
            stdout = self.run_squeue(job_ids)
            id_to_state = {
                out.split()[0]: out.split()[1] for out in stdout.splitlines()
            }
            # Finished jobs only stay in squeue for a few mins (configurable).
            # If a job ID isn't there, we'll assume it's finished.
            output = {
                _id
                for _id in job_ids
                if id_to_state.get(_id, "COMPLETED") in STATES_FINISHED
            }
            logger.debug(
                f"[FractalSlurmSSHExecutor._jobs_finished] END - {output=}"
            )
            return output
        except Exception as e:
            # If something goes wrong, proceed anyway
            logger.error(
                f"Something wrong in _jobs_finished. Original error: {str(e)}"
            )
            output = set()
            logger.debug(
                f"[FractalSlurmSSHExecutor._jobs_finished] END - {output=}"
            )
            return output

            id_to_state = dict()
            for j in job_ids:
                res = self.run_squeue([j])
                if res.returncode != 0:
                    logger.info(f"Job {j} not found. Marked it as completed")
                    id_to_state.update({str(j): "COMPLETED"})
                else:
                    id_to_state.update(
                        {res.stdout.split()[0]: res.stdout.split()[1]}
                    )

    def handshake(self) -> dict:
        """
        Healthcheck for SSH connection and for versions match.

        FIXME SSH: We should add a timeout here
        FIXME SSH: We could include checks on the existence of folders
        FIXME SSH: We could include further checks on version matches
        """

        self.fractal_ssh.check_connection()

        t_start_handshake = time.perf_counter()

        logger.info("[FractalSlurmSSHExecutor.ssh_handshake] START")
        cmd = f"{self.python_remote} -m fractal_server.app.runner.versions"
        stdout = self.fractal_ssh.run_command(cmd=cmd)
        try:
            remote_versions = json.loads(stdout.strip("\n"))
        except json.decoder.JSONDecodeError as e:
            logger.error("Fractal server versions not available")
            raise e

        # Check compatibility with local versions
        local_versions = get_versions()
        remote_fractal_server = remote_versions["fractal_server"]
        local_fractal_server = local_versions["fractal_server"]
        if remote_fractal_server != local_fractal_server:
            error_msg = (
                "Fractal-server version mismatch.\n"
                "Local interpreter: "
                f"({sys.executable}): {local_versions}.\n"
                "Remote interpreter: "
                f"({self.python_remote}): {remote_versions}."
            )
            logger.error(error_msg)
            raise ValueError(error_msg)

        t_end_handshake = time.perf_counter()
        logger.info(
            "[FractalSlurmSSHExecutor.ssh_handshake] END"
            f" - elapsed: {t_end_handshake-t_start_handshake:.3f} s"
        )
        return remote_versions

__exit__(*args, **kwargs)

See https://github.com/fractal-analytics-platform/fractal-server/issues/1508

Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
def __exit__(self, *args, **kwargs):
    """
    See
    https://github.com/fractal-analytics-platform/fractal-server/issues/1508
    """
    logger.debug(
        "[FractalSlurmSSHExecutor.__exit__] Stop and join `wait_thread`"
    )
    self._stop_and_join_wait_thread()
    logger.debug("[FractalSlurmSSHExecutor.__exit__] End")

__init__(*, fractal_ssh, workflow_dir_local, workflow_dir_remote, keep_pickle_files=False, slurm_poll_interval=None, common_script_lines=None, slurm_account=None, **kwargs)

Init method for FractalSlurmSSHExecutor

Note: since we are not using super().__init__, we duplicate some relevant bits of cfut.ClusterExecutor.__init__.

Parameters:

Name Type Description Default
fractal_ssh FractalSSH
required
workflow_dir_local Path
required
workflow_dir_remote Path
required
keep_pickle_files bool
False
slurm_poll_interval Optional[int]
None
common_script_lines Optional[list[str]]
None
slurm_account Optional[str]
None
Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def __init__(
    self,
    *,
    # FractalSSH connection
    fractal_ssh: FractalSSH,
    # Folders and files
    workflow_dir_local: Path,
    workflow_dir_remote: Path,
    # Runner options
    keep_pickle_files: bool = False,
    # Monitoring options
    slurm_poll_interval: Optional[int] = None,
    # SLURM submission script options
    common_script_lines: Optional[list[str]] = None,
    slurm_account: Optional[str] = None,
    # Other kwargs are ignored
    **kwargs,
):
    """
    Init method for FractalSlurmSSHExecutor

    Note: since we are not using `super().__init__`, we duplicate some
    relevant bits of `cfut.ClusterExecutor.__init__`.

    Args:
        fractal_ssh:
        workflow_dir_local:
        workflow_dir_remote:
        keep_pickle_files:
        slurm_poll_interval:
        common_script_lines:
        slurm_account:
    """

    if kwargs != {}:
        raise ValueError(
            f"FractalSlurmSSHExecutor received unexpected {kwargs=}"
        )

    self.workflow_dir_local = workflow_dir_local
    self.workflow_dir_remote = workflow_dir_remote

    # Relevant bits of cfut.ClusterExecutor.__init__ are copied here,
    # postponing the .start() call to when the callbacks are defined
    self.jobs = {}
    self.job_outfiles = {}
    self.jobs_lock = threading.Lock()
    self.jobs_empty_cond = threading.Condition(self.jobs_lock)
    self.wait_thread = self.wait_thread_cls(self._completion)

    # Set up attributes and methods for self.wait_thread
    # cfut.SlurmWaitThread)
    self.wait_thread.shutdown_callback = self.shutdown
    self.wait_thread.jobs_finished_callback = self._jobs_finished
    if slurm_poll_interval is None:
        settings = Inject(get_settings)
        slurm_poll_interval = settings.FRACTAL_SLURM_POLL_INTERVAL
    elif slurm_poll_interval <= 0:
        raise ValueError(f"Invalid attribute {slurm_poll_interval=}")
    self.wait_thread.slurm_poll_interval = slurm_poll_interval
    self.wait_thread.shutdown_file = (
        self.workflow_dir_local / SHUTDOWN_FILENAME
    ).as_posix()

    # Now start self.wait_thread (note: this must be *after* its callback
    # methods have been defined)
    self.wait_thread.start()

    # Define remote Python interpreter
    settings = Inject(get_settings)
    self.python_remote = settings.FRACTAL_SLURM_WORKER_PYTHON
    if self.python_remote is None:
        self._stop_and_join_wait_thread()
        raise ValueError("FRACTAL_SLURM_WORKER_PYTHON is not set. Exit.")

    # Initialize connection and perform handshake
    self.fractal_ssh = fractal_ssh
    logger.warning(self.fractal_ssh)
    try:
        self.handshake()
    except Exception as e:
        logger.warning(
            "Stop/join waiting thread and then "
            f"re-raise original error {str(e)}"
        )
        self._stop_and_join_wait_thread()
        raise e

    # Set/validate parameters for SLURM submission scripts
    self.slurm_account = slurm_account
    self.common_script_lines = common_script_lines or []
    try:
        self._validate_common_script_lines()
    except Exception as e:
        logger.warning(
            "Stop/join waiting thread and then "
            f"re-raise original error {str(e)}"
        )
        self._stop_and_join_wait_thread()
        raise e

    # Set/initialize some more options
    self.keep_pickle_files = keep_pickle_files
    self.map_jobid_to_slurm_files_local = {}

_cleanup(jobid)

Given a job ID, perform any necessary cleanup after the job has finished.

Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
220
221
222
223
224
225
226
def _cleanup(self, jobid: str) -> None:
    """
    Given a job ID, perform any necessary cleanup after the job has
    finished.
    """
    with self.jobs_lock:
        self.map_jobid_to_slurm_files_local.pop(jobid)

_completion(job_ids)

Callback function to be executed whenever a job finishes.

This function is executed by self.wait_thread (triggered by either finding an existing output pickle file out_path or finding that the SLURM job is over). Since this takes place on a different thread, failures may not be captured by the main thread; we use a broad try/except block, so that those exceptions are reported to the main thread via fut.set_exception(...).

Parameters:

Name Type Description Default
job_ids list[str]

IDs of the SLURM jobs to handle.

required
Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
def _completion(self, job_ids: list[str]) -> None:
    """
    Callback function to be executed whenever a job finishes.

    This function is executed by self.wait_thread (triggered by either
    finding an existing output pickle file `out_path` or finding that the
    SLURM job is over). Since this takes place on a different thread,
    failures may not be captured by the main thread; we use a broad
    try/except block, so that those exceptions are reported to the main
    thread via `fut.set_exception(...)`.

    Arguments:
        job_ids: IDs of the SLURM jobs to handle.
    """
    # Handle all uncaught exceptions in this broad try/except block
    try:
        logger.info(
            f"[FractalSlurmSSHExecutor._completion] START, for {job_ids=}."
        )

        # Loop over all job_ids, and fetch future and job objects
        futures: list[Future] = []
        jobs: list[SlurmJob] = []
        with self.jobs_lock:
            for job_id in job_ids:
                future, job = self.jobs.pop(job_id)
                futures.append(future)
                jobs.append(job)
            if not self.jobs:
                self.jobs_empty_cond.notify_all()

        # Fetch subfolder from remote host
        self._get_subfolder_sftp(jobs=jobs)

        # First round of checking whether all output files exist
        missing_out_paths = []
        for job in jobs:
            for ind_out_path, out_path in enumerate(
                job.output_pickle_files_local
            ):
                if not out_path.exists():
                    missing_out_paths.append(out_path)
        num_missing = len(missing_out_paths)
        if num_missing > 0:
            # Output pickle files may be missing e.g. because of some slow
            # filesystem operation; wait some time before re-trying
            settings = Inject(get_settings)
            sleep_time = settings.FRACTAL_SLURM_ERROR_HANDLING_INTERVAL
            logger.info(
                f"{num_missing} output pickle files are missing; "
                f"sleep {sleep_time} seconds."
            )
            for missing_file in missing_out_paths:
                logger.debug(f"Missing output pickle file: {missing_file}")
            time.sleep(sleep_time)

        # Handle all jobs
        for ind_job, job_id in enumerate(job_ids):
            # Retrieve job and future objects
            job = jobs[ind_job]
            future = futures[ind_job]
            remaining_job_ids = job_ids[ind_job + 1 :]  # noqa: E203
            remaining_futures = futures[ind_job + 1 :]  # noqa: E203

            outputs = []

            for ind_out_path, out_path in enumerate(
                job.output_pickle_files_local
            ):
                in_path = job.input_pickle_files_local[ind_out_path]
                if not out_path.exists():
                    # Output pickle file is still missing
                    info = self._missing_pickle_error_msg(out_path)
                    job_exc = self._prepare_JobExecutionError(
                        job_id, info=info
                    )
                    try:
                        future.set_exception(job_exc)
                        self._handle_remaining_jobs(
                            remaining_futures=remaining_futures,
                            remaining_job_ids=remaining_job_ids,
                        )
                        logger.info(
                            "[FractalSlurmSSHExecutor._completion] END, "
                            f"for {job_ids=}, with JobExecutionError due "
                            f"to missing {out_path.as_posix()}."
                        )
                        return
                    except InvalidStateError:
                        logger.warning(
                            f"Future {future} (SLURM job ID: {job_id}) "
                            "was already cancelled."
                        )
                        if not self.keep_pickle_files:
                            in_path.unlink()
                        self._cleanup(job_id)
                        self._handle_remaining_jobs(
                            remaining_futures=remaining_futures,
                            remaining_job_ids=remaining_job_ids,
                        )
                        logger.info(
                            "[FractalSlurmSSHExecutor._completion] END, "
                            f"for {job_ids=}, with JobExecutionError/"
                            "InvalidStateError due to "
                            f"missing {out_path.as_posix()}."
                        )
                        return

                # Read the task output
                with out_path.open("rb") as f:
                    outdata = f.read()
                # Note: output can be either the task result (typically a
                # dictionary) or an ExceptionProxy object; in the latter
                # case, the ExceptionProxy definition is also part of the
                # pickle file (thanks to cloudpickle.dumps).
                success, output = cloudpickle.loads(outdata)
                try:
                    if success:
                        outputs.append(output)
                    else:
                        proxy = output
                        if proxy.exc_type_name == "JobExecutionError":
                            job_exc = self._prepare_JobExecutionError(
                                job_id, info=proxy.kwargs.get("info", None)
                            )
                            future.set_exception(job_exc)
                            self._handle_remaining_jobs(
                                remaining_futures=remaining_futures,
                                remaining_job_ids=remaining_job_ids,
                            )
                            return
                        else:
                            # This branch catches both TaskExecutionError's
                            # (coming from the typical fractal-server
                            # execution of tasks, and with additional
                            # fractal-specific kwargs) or arbitrary
                            # exceptions (coming from a direct use of
                            # FractalSlurmSSHExecutor, possibly outside
                            # fractal-server)
                            kwargs = {}
                            for key in [
                                "workflow_task_id",
                                "workflow_task_order",
                                "task_name",
                            ]:
                                if key in proxy.kwargs.keys():
                                    kwargs[key] = proxy.kwargs[key]
                            exc = TaskExecutionError(proxy.tb, **kwargs)
                            future.set_exception(exc)
                            self._handle_remaining_jobs(
                                remaining_futures=remaining_futures,
                                remaining_job_ids=remaining_job_ids,
                            )
                            return
                    if not self.keep_pickle_files:
                        out_path.unlink()
                except InvalidStateError:
                    logger.warning(
                        f"Future {future} (SLURM job ID: {job_id}) was "
                        "already cancelled, exit from "
                        "FractalSlurmSSHExecutor._completion."
                    )
                    if not self.keep_pickle_files:
                        out_path.unlink()
                        in_path.unlink()

                    self._cleanup(job_id)
                    self._handle_remaining_jobs(
                        remaining_futures=remaining_futures,
                        remaining_job_ids=remaining_job_ids,
                    )
                    return

                # Clean up input pickle file
                if not self.keep_pickle_files:
                    in_path.unlink()
            self._cleanup(job_id)
            if job.single_task_submission:
                future.set_result(outputs[0])
            else:
                future.set_result(outputs)

    except Exception as e:
        logger.warning(
            "[FractalSlurmSSHExecutor._completion] "
            f"An exception took place: {str(e)}."
        )
        for future in futures:
            try:
                logger.info(f"Set exception for {future=}")
                future.set_exception(e)
            except InvalidStateError:
                logger.info(f"Future {future} was already cancelled.")
        logger.info(
            f"[FractalSlurmSSHExecutor._completion] END, for {job_ids=}, "
            "from within exception handling."
        )
        return

_get_subfolder_sftp(jobs)

Fetch a remote folder via tar+sftp+tar

Parameters:

Name Type Description Default
jobs list[SlurmJob]

List of SlurmJob object (needed for their prefix-related attributes).

required
Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
def _get_subfolder_sftp(self, jobs: list[SlurmJob]) -> None:
    """
    Fetch a remote folder via tar+sftp+tar

    Arguments:
        jobs:
            List of `SlurmJob` object (needed for their prefix-related
            attributes).
    """

    # Check that the subfolder is unique
    subfolder_names = [job.wftask_subfolder_name for job in jobs]
    if len(set(subfolder_names)) > 1:
        raise ValueError(
            "[_put_subfolder] Invalid list of jobs, "
            f"{set(subfolder_names)=}."
        )
    subfolder_name = subfolder_names[0]

    t_0 = time.perf_counter()
    logger.debug("[_get_subfolder_sftp] Start")
    tarfile_path_local = (
        self.workflow_dir_local / f"{subfolder_name}.tar.gz"
    ).as_posix()
    tarfile_path_remote = (
        self.workflow_dir_remote / f"{subfolder_name}.tar.gz"
    ).as_posix()

    # Remove remote tarfile
    rm_command = f"rm {tarfile_path_remote}"
    self.fractal_ssh.run_command(cmd=rm_command)

    # Create remote tarfile
    tar_command = (
        f"{self.python_remote} "
        "-m fractal_server.app.runner.compress_folder "
        f"{(self.workflow_dir_remote / subfolder_name).as_posix()} "
        "--remote-to-local"
    )
    stdout = self.fractal_ssh.run_command(cmd=tar_command)
    print(stdout)

    # Fetch tarfile
    t_0_get = time.perf_counter()
    self.fractal_ssh.fetch_file(
        remote=tarfile_path_remote,
        local=tarfile_path_local,
    )
    t_1_get = time.perf_counter()
    logger.info(
        f"Subfolder archive transferred back to {tarfile_path_local}"
        f" - elapsed: {t_1_get - t_0_get:.3f} s"
    )

    # Extract tarfile locally
    extract_archive(Path(tarfile_path_local))

    # Remove local tarfile
    if Path(tarfile_path_local).exists():
        logger.warning(f"Remove existing file {tarfile_path_local}.")
        Path(tarfile_path_local).unlink()

    t_1 = time.perf_counter()
    logger.info("[_get_subfolder_sftp] End - " f"elapsed: {t_1-t_0:.3f} s")

_handle_remaining_jobs(remaining_futures, remaining_job_ids, remaining_jobs)

Helper function used within _completion, when looping over a list of several jobs/futures.

Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
def _handle_remaining_jobs(
    self,
    remaining_futures: list[Future],
    remaining_job_ids: list[str],
    remaining_jobs: list[SlurmJob],
) -> None:
    """
    Helper function used within _completion, when looping over a list of
    several jobs/futures.
    """
    for future in remaining_futures:
        try:
            future.cancel()
        except InvalidStateError:
            pass
    for job_id in remaining_job_ids:
        self._cleanup(job_id)
    if not self.keep_pickle_files:
        for job in remaining_jobs:
            for path in job.output_pickle_files_local:
                path.unlink()
            for path in job.input_pickle_files_local:
                path.unlink()

_jobs_finished(job_ids)

Check which ones of the given Slurm jobs already finished

The function is based on the _jobs_finished function from clusterfutures (version 0.5). Original Copyright: 2022 Adrian Sampson (released under the MIT licence)

Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
def _jobs_finished(self, job_ids: list[str]) -> set[str]:
    """
    Check which ones of the given Slurm jobs already finished

    The function is based on the `_jobs_finished` function from
    clusterfutures (version 0.5).
    Original Copyright: 2022 Adrian Sampson
    (released under the MIT licence)
    """

    from cfut.slurm import STATES_FINISHED

    logger.debug(
        f"[FractalSlurmSSHExecutor._jobs_finished] START ({job_ids=})"
    )

    # If there is no Slurm job to check, return right away
    if not job_ids:
        logger.debug(
            "[FractalSlurmSSHExecutor._jobs_finished] "
            "No jobs provided, return."
        )
        return set()

    try:
        stdout = self.run_squeue(job_ids)
        id_to_state = {
            out.split()[0]: out.split()[1] for out in stdout.splitlines()
        }
        # Finished jobs only stay in squeue for a few mins (configurable).
        # If a job ID isn't there, we'll assume it's finished.
        output = {
            _id
            for _id in job_ids
            if id_to_state.get(_id, "COMPLETED") in STATES_FINISHED
        }
        logger.debug(
            f"[FractalSlurmSSHExecutor._jobs_finished] END - {output=}"
        )
        return output
    except Exception as e:
        # If something goes wrong, proceed anyway
        logger.error(
            f"Something wrong in _jobs_finished. Original error: {str(e)}"
        )
        output = set()
        logger.debug(
            f"[FractalSlurmSSHExecutor._jobs_finished] END - {output=}"
        )
        return output

        id_to_state = dict()
        for j in job_ids:
            res = self.run_squeue([j])
            if res.returncode != 0:
                logger.info(f"Job {j} not found. Marked it as completed")
                id_to_state.update({str(j): "COMPLETED"})
            else:
                id_to_state.update(
                    {res.stdout.split()[0]: res.stdout.split()[1]}
                )

_prepare_JobExecutionError(jobid, info)

Prepare the JobExecutionError for a given job

This method creates a JobExecutionError object and sets its attribute to the appropriate SLURM-related file names. Note that the SLURM files are the local ones (i.e. the ones in self.workflow_dir_local).

Parameters:

Name Type Description Default
jobid str

ID of the SLURM job.

required
info str
required
Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
def _prepare_JobExecutionError(
    self, jobid: str, info: str
) -> JobExecutionError:
    """
    Prepare the `JobExecutionError` for a given job

    This method creates a `JobExecutionError` object and sets its attribute
    to the appropriate SLURM-related file names. Note that the SLURM files
    are the local ones (i.e. the ones in `self.workflow_dir_local`).

    Arguments:
        jobid:
            ID of the SLURM job.
        info:
    """
    # Extract SLURM file paths
    with self.jobs_lock:
        (
            slurm_script_file,
            slurm_stdout_file,
            slurm_stderr_file,
        ) = self.map_jobid_to_slurm_files_local[jobid]
    # Construct JobExecutionError exception
    job_exc = JobExecutionError(
        cmd_file=slurm_script_file,
        stdout_file=slurm_stdout_file,
        stderr_file=slurm_stderr_file,
        info=info,
    )
    return job_exc

_prepare_job(fun, slurm_file_prefix, task_files, slurm_config, single_task_submission=False, args=None, kwargs=None, components=None)

Prepare a SLURM job locally, without submitting it

This function prepares and writes the local submission script, but it does not transfer it to the SLURM cluster.

NOTE: this method has different behaviors when it is called from the self.submit or self.map methods (which is also encoded in single_task_submission):

  • When called from self.submit, it supports general args and kwargs arguments;
  • When called from self.map, there cannot be any args or kwargs argument, but there must be a components argument.

Parameters:

Name Type Description Default
fun Callable[..., Any]
required
slurm_file_prefix str
required
task_files TaskFiles
required
slurm_config SlurmConfig
required
single_task_submission bool
False
args Optional[Sequence[Any]]
None
kwargs Optional[dict]
None
components Optional[list[Any]]
None

Returns:

Type Description
SlurmJob

SlurmJob object

Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
def _prepare_job(
    self,
    fun: Callable[..., Any],
    slurm_file_prefix: str,
    task_files: TaskFiles,
    slurm_config: SlurmConfig,
    single_task_submission: bool = False,
    args: Optional[Sequence[Any]] = None,
    kwargs: Optional[dict] = None,
    components: Optional[list[Any]] = None,
) -> SlurmJob:
    """
    Prepare a SLURM job locally, without submitting it

    This function prepares and writes the local submission script, but it
    does not transfer it to the SLURM cluster.

    NOTE: this method has different behaviors when it is called from the
    `self.submit` or `self.map` methods (which is also encoded in
    `single_task_submission`):

    * When called from `self.submit`, it supports general `args` and
      `kwargs` arguments;
    * When called from `self.map`, there cannot be any `args` or `kwargs`
      argument, but there must be a `components` argument.

    Arguments:
        fun:
        slurm_file_prefix:
        task_files:
        slurm_config:
        single_task_submission:
        args:
        kwargs:
        components:

    Returns:
        SlurmJob object
    """

    # Inject SLURM account (if set) into slurm_config
    if self.slurm_account:
        slurm_config.account = self.slurm_account

    # Define slurm-job-related files
    if single_task_submission:
        if components is not None:
            raise ValueError(
                f"{single_task_submission=} but components is not None"
            )
        job = SlurmJob(
            slurm_file_prefix=slurm_file_prefix,
            num_tasks_tot=1,
            slurm_config=slurm_config,
        )
        if job.num_tasks_tot > 1:
            raise ValueError(
                "{single_task_submission=} but {job.num_tasks_tot=}"
            )
        job.single_task_submission = True
        job.wftask_file_prefixes = (task_files.file_prefix,)
        job.wftask_subfolder_name = task_files.subfolder_name

    else:
        if not components or len(components) < 1:
            raise ValueError(
                "In FractalSlurmSSHExecutor._submit_job, given "
                f"{components=}."
            )
        num_tasks_tot = len(components)
        job = SlurmJob(
            slurm_file_prefix=slurm_file_prefix,
            num_tasks_tot=num_tasks_tot,
            slurm_config=slurm_config,
        )

        _prefixes = []
        _subfolder_names = []
        for component in components:
            if isinstance(component, dict):
                actual_component = component.get(_COMPONENT_KEY_, None)
            else:
                actual_component = component
            _task_file_paths = get_task_file_paths(
                workflow_dir_local=task_files.workflow_dir_local,
                workflow_dir_remote=task_files.workflow_dir_remote,
                task_name=task_files.task_name,
                task_order=task_files.task_order,
                component=actual_component,
            )
            _prefixes.append(_task_file_paths.file_prefix)
            _subfolder_names.append(_task_file_paths.subfolder_name)
        job.wftask_file_prefixes = tuple(_prefixes)

        # Check that all components share the same subfolder
        num_subfolders = len(set(_subfolder_names))
        if num_subfolders != 1:
            error_msg_short = (
                f"[_submit_job] Subfolder list has {num_subfolders} "
                "different values, but it must have only one (since "
                "workflow tasks are executed one by one)."
            )
            error_msg_detail = (
                "[_submit_job] Current unique subfolder names: "
                f"{set(_subfolder_names)}"
            )
            logger.error(error_msg_short)
            logger.error(error_msg_detail)
            raise ValueError(error_msg_short)
        job.wftask_subfolder_name = _subfolder_names[0]

    # Check that server-side subfolder exists
    subfolder_path = self.workflow_dir_local / job.wftask_subfolder_name
    if not subfolder_path.exists():
        raise FileNotFoundError(
            f"Missing folder {subfolder_path.as_posix()}."
        )

    job.input_pickle_files_local = tuple(
        get_pickle_file_path(
            arg=job.workerids[ind],
            workflow_dir=self.workflow_dir_local,
            subfolder_name=job.wftask_subfolder_name,
            in_or_out="in",
            prefix=job.wftask_file_prefixes[ind],
        )
        for ind in range(job.num_tasks_tot)
    )

    job.input_pickle_files_remote = tuple(
        get_pickle_file_path(
            arg=job.workerids[ind],
            workflow_dir=self.workflow_dir_remote,
            subfolder_name=job.wftask_subfolder_name,
            in_or_out="in",
            prefix=job.wftask_file_prefixes[ind],
        )
        for ind in range(job.num_tasks_tot)
    )
    job.output_pickle_files_local = tuple(
        get_pickle_file_path(
            arg=job.workerids[ind],
            workflow_dir=self.workflow_dir_local,
            subfolder_name=job.wftask_subfolder_name,
            in_or_out="out",
            prefix=job.wftask_file_prefixes[ind],
        )
        for ind in range(job.num_tasks_tot)
    )
    job.output_pickle_files_remote = tuple(
        get_pickle_file_path(
            arg=job.workerids[ind],
            workflow_dir=self.workflow_dir_remote,
            subfolder_name=job.wftask_subfolder_name,
            in_or_out="out",
            prefix=job.wftask_file_prefixes[ind],
        )
        for ind in range(job.num_tasks_tot)
    )
    # define slurm-job file local/remote paths
    job.slurm_script_local = get_slurm_script_file_path(
        workflow_dir=self.workflow_dir_local,
        subfolder_name=job.wftask_subfolder_name,
        prefix=job.slurm_file_prefix,
    )
    job.slurm_script_remote = get_slurm_script_file_path(
        workflow_dir=self.workflow_dir_remote,
        subfolder_name=job.wftask_subfolder_name,
        prefix=job.slurm_file_prefix,
    )
    job.slurm_stdout_local = get_slurm_file_path(
        workflow_dir=self.workflow_dir_local,
        subfolder_name=job.wftask_subfolder_name,
        out_or_err="out",
        prefix=job.slurm_file_prefix,
    )
    job.slurm_stdout_remote = get_slurm_file_path(
        workflow_dir=self.workflow_dir_remote,
        subfolder_name=job.wftask_subfolder_name,
        out_or_err="out",
        prefix=job.slurm_file_prefix,
    )
    job.slurm_stderr_local = get_slurm_file_path(
        workflow_dir=self.workflow_dir_local,
        subfolder_name=job.wftask_subfolder_name,
        out_or_err="err",
        prefix=job.slurm_file_prefix,
    )
    job.slurm_stderr_remote = get_slurm_file_path(
        workflow_dir=self.workflow_dir_remote,
        subfolder_name=job.wftask_subfolder_name,
        out_or_err="err",
        prefix=job.slurm_file_prefix,
    )

    # Dump serialized versions+function+args+kwargs to pickle file(s)
    versions = get_versions()
    if job.single_task_submission:
        _args = args or []
        _kwargs = kwargs or {}
        funcser = cloudpickle.dumps((versions, fun, _args, _kwargs))
        with open(job.input_pickle_files_local[0], "wb") as f:
            f.write(funcser)
    else:
        for ind_component, component in enumerate(components):
            _args = [component]
            _kwargs = {}
            funcser = cloudpickle.dumps((versions, fun, _args, _kwargs))
            with open(
                job.input_pickle_files_local[ind_component], "wb"
            ) as f:
                f.write(funcser)

    # Prepare commands to be included in SLURM submission script
    cmdlines = []
    for ind_task in range(job.num_tasks_tot):
        input_pickle_file = job.input_pickle_files_remote[ind_task]
        output_pickle_file = job.output_pickle_files_remote[ind_task]
        cmdlines.append(
            (
                f"{self.python_remote}"
                " -m fractal_server.app.runner.executors.slurm.remote "
                f"--input-file {input_pickle_file} "
                f"--output-file {output_pickle_file}"
            )
        )

    # Prepare SLURM submission script
    sbatch_script_content = self._prepare_sbatch_script(
        slurm_config=job.slurm_config,
        list_commands=cmdlines,
        slurm_out_path=str(job.slurm_stdout_remote),
        slurm_err_path=str(job.slurm_stderr_remote),
    )
    with job.slurm_script_local.open("w") as f:
        f.write(sbatch_script_content)

    return job

_put_subfolder_sftp(jobs)

Transfer the jobs subfolder to the remote host.

Parameters:

Name Type Description Default
jobs list[SlurmJob]

The list of SlurmJob objects associated to a given subfolder.

required
Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
def _put_subfolder_sftp(self, jobs: list[SlurmJob]) -> None:
    """
    Transfer the jobs subfolder to the remote host.

    Arguments:
        jobs: The list of `SlurmJob` objects associated to a given
            subfolder.
    """

    # Check that the subfolder is unique
    subfolder_names = [job.wftask_subfolder_name for job in jobs]
    if len(set(subfolder_names)) > 1:
        raise ValueError(
            "[_put_subfolder] Invalid list of jobs, "
            f"{set(subfolder_names)=}."
        )
    subfolder_name = subfolder_names[0]

    # Create compressed subfolder archive (locally)
    local_subfolder = self.workflow_dir_local / subfolder_name
    tarfile_path_local = compress_folder(local_subfolder)
    tarfile_name = Path(tarfile_path_local).name
    logger.info(f"Subfolder archive created at {tarfile_path_local}")
    tarfile_path_remote = (
        self.workflow_dir_remote / tarfile_name
    ).as_posix()

    # Transfer archive
    t_0_put = time.perf_counter()
    self.fractal_ssh.send_file(
        local=tarfile_path_local,
        remote=tarfile_path_remote,
    )
    t_1_put = time.perf_counter()
    logger.info(
        f"Subfolder archive transferred to {tarfile_path_remote}"
        f" - elapsed: {t_1_put - t_0_put:.3f} s"
    )
    # Uncompress archive (remotely)
    tar_command = (
        f"{self.python_remote} -m "
        "fractal_server.app.runner.extract_archive "
        f"{tarfile_path_remote}"
    )
    self.fractal_ssh.run_command(cmd=tar_command)

    # Remove local version
    t_0_rm = time.perf_counter()
    Path(tarfile_path_local).unlink()
    t_1_rm = time.perf_counter()
    logger.info(
        f"Local archive removed - elapsed: {t_1_rm - t_0_rm:.3f} s"
    )

_submit_job(job)

Submit a job to SLURM via SSH.

This method must always be called after self._put_subfolder.

Parameters:

Name Type Description Default
job SlurmJob

The SlurmJob object to submit.

required
Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
def _submit_job(self, job: SlurmJob) -> tuple[Future, str]:
    """
    Submit a job to SLURM via SSH.

    This method must always be called after `self._put_subfolder`.

    Arguments:
        job: The `SlurmJob` object to submit.
    """

    # Prevent calling sbatch if auxiliary thread was shut down
    if self.wait_thread.shutdown:
        error_msg = (
            "Cannot call `_submit_job` method after executor shutdown"
        )
        logger.warning(error_msg)
        raise JobExecutionError(info=error_msg)

    # Submit job to SLURM, and get jobid
    sbatch_command = f"sbatch --parsable {job.slurm_script_remote}"
    pre_submission_cmds = job.slurm_config.pre_submission_commands
    if len(pre_submission_cmds) == 0:
        sbatch_stdout = self.fractal_ssh.run_command(cmd=sbatch_command)
    else:
        logger.debug(f"Now using {pre_submission_cmds=}")
        script_lines = pre_submission_cmds + [sbatch_command]
        script_content = "\n".join(script_lines)
        script_content = f"{script_content}\n"
        script_path_remote = (
            f"{job.slurm_script_remote.as_posix()}_wrapper.sh"
        )
        self.fractal_ssh.write_remote_file(
            path=script_path_remote, content=script_content
        )
        cmd = f"bash {script_path_remote}"
        sbatch_stdout = self.fractal_ssh.run_command(cmd=cmd)

    # Extract SLURM job ID from stdout
    try:
        stdout = sbatch_stdout.strip("\n")
        jobid = int(stdout)
    except ValueError as e:
        error_msg = (
            f"Submit command `{sbatch_command}` returned "
            f"`{stdout=}` which cannot be cast to an integer "
            f"SLURM-job ID.\n"
            f"Note that {pre_submission_cmds=}.\n"
            f"Original error:\n{str(e)}"
        )
        logger.error(error_msg)
        raise JobExecutionError(info=error_msg)
    job_id_str = str(jobid)

    # Plug job id in stdout/stderr SLURM file paths (local and remote)
    def _replace_job_id(_old_path: Path) -> Path:
        return Path(_old_path.as_posix().replace("%j", job_id_str))

    job.slurm_stdout_local = _replace_job_id(job.slurm_stdout_local)
    job.slurm_stdout_remote = _replace_job_id(job.slurm_stdout_remote)
    job.slurm_stderr_local = _replace_job_id(job.slurm_stderr_local)
    job.slurm_stderr_remote = _replace_job_id(job.slurm_stderr_remote)

    # Add the SLURM script/out/err paths to map_jobid_to_slurm_files (this
    # must be after the `sbatch` call, so that "%j" has already been
    # replaced with the job ID)
    with self.jobs_lock:
        self.map_jobid_to_slurm_files_local[job_id_str] = (
            job.slurm_script_local.as_posix(),
            job.slurm_stdout_local.as_posix(),
            job.slurm_stderr_local.as_posix(),
        )

    # Create future
    future = Future()
    with self.jobs_lock:
        self.jobs[job_id_str] = (future, job)
    return future, job_id_str

_validate_common_script_lines()

Check that SLURM account is not set in self.common_script_lines.

Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
def _validate_common_script_lines(self):
    """
    Check that SLURM account is not set in `self.common_script_lines`.
    """
    try:
        invalid_line = next(
            line
            for line in self.common_script_lines
            if line.startswith("#SBATCH --account=")
        )
        raise RuntimeError(
            "Invalid line in `FractalSlurmSSHExecutor."
            "common_script_lines`: "
            f"'{invalid_line}'.\n"
            "SLURM account must be set via the request body of the "
            "apply-workflow endpoint, or by modifying the user properties."
        )
    except StopIteration:
        pass

handshake()

Healthcheck for SSH connection and for versions match.

FIXME SSH: We should add a timeout here FIXME SSH: We could include checks on the existence of folders FIXME SSH: We could include further checks on version matches

Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
def handshake(self) -> dict:
    """
    Healthcheck for SSH connection and for versions match.

    FIXME SSH: We should add a timeout here
    FIXME SSH: We could include checks on the existence of folders
    FIXME SSH: We could include further checks on version matches
    """

    self.fractal_ssh.check_connection()

    t_start_handshake = time.perf_counter()

    logger.info("[FractalSlurmSSHExecutor.ssh_handshake] START")
    cmd = f"{self.python_remote} -m fractal_server.app.runner.versions"
    stdout = self.fractal_ssh.run_command(cmd=cmd)
    try:
        remote_versions = json.loads(stdout.strip("\n"))
    except json.decoder.JSONDecodeError as e:
        logger.error("Fractal server versions not available")
        raise e

    # Check compatibility with local versions
    local_versions = get_versions()
    remote_fractal_server = remote_versions["fractal_server"]
    local_fractal_server = local_versions["fractal_server"]
    if remote_fractal_server != local_fractal_server:
        error_msg = (
            "Fractal-server version mismatch.\n"
            "Local interpreter: "
            f"({sys.executable}): {local_versions}.\n"
            "Remote interpreter: "
            f"({self.python_remote}): {remote_versions}."
        )
        logger.error(error_msg)
        raise ValueError(error_msg)

    t_end_handshake = time.perf_counter()
    logger.info(
        "[FractalSlurmSSHExecutor.ssh_handshake] END"
        f" - elapsed: {t_end_handshake-t_start_handshake:.3f} s"
    )
    return remote_versions

map(fn, iterable, *, slurm_config, task_files)

Return an iterator with the results of several execution of a function

This function is based on concurrent.futures.Executor.map from Python Standard Library 3.11. Original Copyright 2009 Brian Quinlan. All Rights Reserved. Licensed to PSF under a Contributor Agreement.

Main modifications from the PSF function:

  1. Only fn and iterable can be assigned as positional arguments;
  2. *iterables argument replaced with a single iterable;
  3. timeout and chunksize arguments are not supported.

Parameters:

Name Type Description Default
fn Callable[..., Any]

The function to be executed

required
iterable list[Sequence[Any]]

An iterable such that each element is the list of arguments to be passed to fn, as in fn(*args).

required
slurm_config SlurmConfig

A SlurmConfig object.

required
task_files TaskFiles

A TaskFiles object.

required
Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
def map(
    self,
    fn: Callable[..., Any],
    iterable: list[Sequence[Any]],
    *,
    slurm_config: SlurmConfig,
    task_files: TaskFiles,
):
    """
    Return an iterator with the results of several execution of a function

    This function is based on `concurrent.futures.Executor.map` from Python
    Standard Library 3.11.
    Original Copyright 2009 Brian Quinlan. All Rights Reserved. Licensed to
    PSF under a Contributor Agreement.

    Main modifications from the PSF function:

    1. Only `fn` and `iterable` can be assigned as positional arguments;
    2. `*iterables` argument replaced with a single `iterable`;
    3. `timeout` and `chunksize` arguments are not supported.

    Arguments:
        fn:
            The function to be executed
        iterable:
            An iterable such that each element is the list of arguments to
            be passed to `fn`, as in `fn(*args)`.
        slurm_config:
            A `SlurmConfig` object.
        task_files:
            A `TaskFiles` object.
    """

    # Do not continue if auxiliary thread was shut down
    if self.wait_thread.shutdown:
        error_msg = "Cannot call `map` method after executor shutdown"
        logger.warning(error_msg)
        raise JobExecutionError(info=error_msg)

    def _result_or_cancel(fut):
        """
        This function is based on the Python Standard Library 3.11.
        Original Copyright 2009 Brian Quinlan. All Rights Reserved.
        Licensed to PSF under a Contributor Agreement.
        """
        try:
            try:
                return fut.result()
            finally:
                fut.cancel()
        finally:
            # Break a reference cycle with the exception in
            # self._exception
            del fut

    # Include common_script_lines in extra_lines
    logger.debug(
        f"Adding {self.common_script_lines=} to "
        f"{slurm_config.extra_lines=}, from map method."
    )
    current_extra_lines = slurm_config.extra_lines or []
    slurm_config.extra_lines = (
        current_extra_lines + self.common_script_lines
    )

    # Set file prefixes
    general_slurm_file_prefix = str(task_files.task_order)

    # Transform iterable into a list and count its elements
    list_args = list(iterable)
    tot_tasks = len(list_args)

    # Set/validate parameters for task batching
    tasks_per_job, parallel_tasks_per_job = heuristics(
        # Number of parallel components (always known)
        tot_tasks=len(list_args),
        # Optional WorkflowTask attributes:
        tasks_per_job=slurm_config.tasks_per_job,
        parallel_tasks_per_job=slurm_config.parallel_tasks_per_job,  # noqa
        # Task requirements (multiple possible sources):
        cpus_per_task=slurm_config.cpus_per_task,
        mem_per_task=slurm_config.mem_per_task_MB,
        # Fractal configuration variables (soft/hard limits):
        target_cpus_per_job=slurm_config.target_cpus_per_job,
        target_mem_per_job=slurm_config.target_mem_per_job,
        target_num_jobs=slurm_config.target_num_jobs,
        max_cpus_per_job=slurm_config.max_cpus_per_job,
        max_mem_per_job=slurm_config.max_mem_per_job,
        max_num_jobs=slurm_config.max_num_jobs,
    )
    slurm_config.parallel_tasks_per_job = parallel_tasks_per_job
    slurm_config.tasks_per_job = tasks_per_job

    # Divide arguments in batches of `n_tasks_per_script` tasks each
    args_batches = []
    batch_size = tasks_per_job
    for ind_chunk in range(0, tot_tasks, batch_size):
        args_batches.append(
            list_args[ind_chunk : ind_chunk + batch_size]  # noqa
        )
    if len(args_batches) != math.ceil(tot_tasks / tasks_per_job):
        raise RuntimeError("Something wrong here while batching tasks")

    # Fetch configuration variable
    settings = Inject(get_settings)
    FRACTAL_SLURM_SBATCH_SLEEP = settings.FRACTAL_SLURM_SBATCH_SLEEP

    logger.debug("[map] Job preparation - START")
    current_component_index = 0
    jobs_to_submit = []
    for ind_batch, batch in enumerate(args_batches):
        batch_size = len(batch)
        this_slurm_file_prefix = (
            f"{general_slurm_file_prefix}_batch_{ind_batch:06d}"
        )
        new_job_to_submit = self._prepare_job(
            fn,
            slurm_config=slurm_config,
            slurm_file_prefix=this_slurm_file_prefix,
            task_files=task_files,
            single_task_submission=False,
            components=batch,
        )
        jobs_to_submit.append(new_job_to_submit)
        current_component_index += batch_size
    logger.debug("[map] Job preparation - END")

    self._put_subfolder_sftp(jobs=jobs_to_submit)

    # Construct list of futures (one per SLURM job, i.e. one per batch)
    # FIXME SSH: we may create a single `_submit_many_jobs` method to
    # reduce the number of commands run over SSH
    logger.debug("[map] Job submission - START")
    fs = []
    job_ids = []
    for job in jobs_to_submit:
        future, job_id = self._submit_job(job)
        job_ids.append(job_id)
        fs.append(future)
        time.sleep(FRACTAL_SLURM_SBATCH_SLEEP)
    for job_id in job_ids:
        self.wait_thread.wait(job_id=job_id)
    logger.debug("[map] Job submission - END")

    # Yield must be hidden in closure so that the futures are submitted
    # before the first iterator value is required.
    # NOTE: In this custom map() method, _result_or_cancel(fs.pop()) is an
    # iterable of results (if successful), and we should yield its elements
    # rather than the whole iterable.
    def result_iterator():
        """
        This function is based on the Python Standard Library 3.11.
        Original Copyright 2009 Brian Quinlan. All Rights Reserved.
        Licensed to PSF under a Contributor Agreement.
        """
        try:
            # reverse to keep finishing order
            fs.reverse()
            while fs:
                # Careful not to keep a reference to the popped future
                results = _result_or_cancel(fs.pop())
                for res in results:
                    yield res
        finally:
            for future in fs:
                future.cancel()

    return result_iterator()

shutdown(wait=True, *, cancel_futures=False)

Clean up all executor variables. Note that this function is executed on the self.wait_thread thread, see _completion.

Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
def shutdown(self, wait=True, *, cancel_futures=False):
    """
    Clean up all executor variables. Note that this function is executed on
    the self.wait_thread thread, see _completion.
    """

    # Redudantly set thread shutdown attribute to True
    self.wait_thread.shutdown = True

    logger.debug("Executor shutdown: start")

    # Handle all job futures
    slurm_jobs_to_scancel = []
    with self.jobs_lock:
        while self.jobs:
            jobid, fut_and_job = self.jobs.popitem()
            slurm_jobs_to_scancel.append(jobid)
            fut = fut_and_job[0]
            self.map_jobid_to_slurm_files_local.pop(jobid)
            if not fut.cancelled():
                fut.set_exception(
                    JobExecutionError(
                        "Job cancelled due to executor shutdown."
                    )
                )
                fut.cancel()

    # Cancel SLURM jobs
    if slurm_jobs_to_scancel:
        scancel_string = " ".join(slurm_jobs_to_scancel)
        logger.warning(f"Now scancel-ing SLURM jobs {scancel_string}")
        scancel_command = f"scancel {scancel_string}"
        self.fractal_ssh.run_command(cmd=scancel_command)
    logger.debug("Executor shutdown: end")

submit(fun, *fun_args, slurm_config, task_files, **fun_kwargs)

Submit a function for execution on FractalSlurmSSHExecutor

Parameters:

Name Type Description Default
fun Callable[..., Any]

The function to be executed

required
fun_args Sequence[Any]

Function positional arguments

()
fun_kwargs dict

Function keyword arguments

{}
slurm_config SlurmConfig

A SlurmConfig object.

required
task_files TaskFiles

A TaskFiles object.

required

Returns:

Type Description
Future

Future representing the execution of the current SLURM job.

Source code in fractal_server/app/runner/executors/slurm/ssh/executor.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
def submit(
    self,
    fun: Callable[..., Any],
    *fun_args: Sequence[Any],
    slurm_config: SlurmConfig,
    task_files: TaskFiles,
    **fun_kwargs: dict,
) -> Future:
    """
    Submit a function for execution on `FractalSlurmSSHExecutor`

    Arguments:
        fun: The function to be executed
        fun_args: Function positional arguments
        fun_kwargs: Function keyword arguments
        slurm_config:
            A `SlurmConfig` object.
        task_files:
            A `TaskFiles` object.

    Returns:
        Future representing the execution of the current SLURM job.
    """

    # Do not continue if auxiliary thread was shut down
    if self.wait_thread.shutdown:
        error_msg = "Cannot call `submit` method after executor shutdown"
        logger.warning(error_msg)
        raise JobExecutionError(info=error_msg)

    # Set slurm_file_prefix
    slurm_file_prefix = task_files.file_prefix

    # Include common_script_lines in extra_lines
    logger.debug(
        f"Adding {self.common_script_lines=} to "
        f"{slurm_config.extra_lines=}, from submit method."
    )
    current_extra_lines = slurm_config.extra_lines or []
    slurm_config.extra_lines = (
        current_extra_lines + self.common_script_lines
    )

    # Adapt slurm_config to the fact that this is a single-task SlurmJob
    # instance
    slurm_config.tasks_per_job = 1
    slurm_config.parallel_tasks_per_job = 1

    job = self._prepare_job(
        fun,
        slurm_config=slurm_config,
        slurm_file_prefix=slurm_file_prefix,
        task_files=task_files,
        single_task_submission=True,
        args=fun_args,
        kwargs=fun_kwargs,
    )
    self._put_subfolder_sftp(jobs=[job])
    future, job_id_str = self._submit_job(job)
    self.wait_thread.wait(job_id=job_id_str)
    return future