Skip to content

executor

FractalSlurmExecutor

Bases: SlurmExecutor

FractalSlurmExecutor (inherits from cfut.SlurmExecutor)

Attributes:

Name Type Description
slurm_user str

Shell username that runs the sbatch command.

common_script_lines list[str]

Arbitrary script lines that will always be included in the sbatch script

workflow_dir_local Path

Directory for both the cfut/SLURM and fractal-server files and logs

workflow_dir_remote Path

Directory for both the cfut/SLURM and fractal-server files and logs

map_jobid_to_slurm_files dict[str, tuple[str, str, str]]

Dictionary with paths of slurm-related files for active jobs

Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
class FractalSlurmExecutor(SlurmExecutor):
    """
    FractalSlurmExecutor (inherits from cfut.SlurmExecutor)

    Attributes:
        slurm_user:
            Shell username that runs the `sbatch` command.
        common_script_lines:
            Arbitrary script lines that will always be included in the
            sbatch script
        workflow_dir_local:
            Directory for both the cfut/SLURM and fractal-server files and logs
        workflow_dir_remote:
            Directory for both the cfut/SLURM and fractal-server files and logs
        map_jobid_to_slurm_files:
            Dictionary with paths of slurm-related files for active jobs
    """

    wait_thread_cls = FractalSlurmWaitThread
    slurm_user: str
    shutdown_file: str
    common_script_lines: list[str]
    user_cache_dir: str
    workflow_dir_local: Path
    workflow_dir_remote: Path
    map_jobid_to_slurm_files: dict[str, tuple[str, str, str]]
    keep_pickle_files: bool
    slurm_account: Optional[str]
    jobs: dict[str, tuple[Future, SlurmJob]]

    def __init__(
        self,
        slurm_user: str,
        workflow_dir_local: Path,
        workflow_dir_remote: Path,
        shutdown_file: Optional[str] = None,
        user_cache_dir: Optional[str] = None,
        common_script_lines: Optional[list[str]] = None,
        slurm_poll_interval: Optional[int] = None,
        keep_pickle_files: bool = False,
        slurm_account: Optional[str] = None,
        *args,
        **kwargs,
    ):
        """
        Init method for FractalSlurmExecutor
        """

        if not slurm_user:
            raise RuntimeError(
                "Missing attribute FractalSlurmExecutor.slurm_user"
            )

        super().__init__(*args, **kwargs)

        # Assign `wait_thread.shutdown_callback` early, since it may be called
        # from within `_stop_and_join_wait_thread` (e.g. if an exception is
        # raised within `__init__`).
        self.wait_thread.shutdown_callback = self.shutdown

        self.keep_pickle_files = keep_pickle_files
        self.slurm_user = slurm_user
        self.slurm_account = slurm_account

        self.common_script_lines = common_script_lines or []

        # Check that SLURM account is not set here
        try:
            invalid_line = next(
                line
                for line in self.common_script_lines
                if line.startswith("#SBATCH --account=")
            )
            self._stop_and_join_wait_thread()
            raise RuntimeError(
                "Invalid line in `FractalSlurmExecutor.common_script_lines`: "
                f"'{invalid_line}'.\n"
                "SLURM account must be set via the request body of the "
                "apply-workflow endpoint, or by modifying the user properties."
            )
        except StopIteration:
            pass

        self.workflow_dir_local = workflow_dir_local
        if not _path_exists_as_user(
            path=str(workflow_dir_remote), user=self.slurm_user
        ):
            logger.info(f"Missing folder {workflow_dir_remote=}")
        self.user_cache_dir = user_cache_dir

        self.workflow_dir_remote = workflow_dir_remote
        self.map_jobid_to_slurm_files = {}

        # Set the attribute slurm_poll_interval for self.wait_thread (see
        # cfut.SlurmWaitThread)
        if not slurm_poll_interval:
            settings = Inject(get_settings)
            slurm_poll_interval = settings.FRACTAL_SLURM_POLL_INTERVAL
        self.wait_thread.slurm_poll_interval = slurm_poll_interval
        self.wait_thread.slurm_user = self.slurm_user

        self.wait_thread.shutdown_file = (
            shutdown_file
            or (self.workflow_dir_local / SHUTDOWN_FILENAME).as_posix()
        )

    def _cleanup(self, jobid: str) -> None:
        """
        Given a job ID as returned by _start, perform any necessary
        cleanup after the job has finished.
        """
        with self.jobs_lock:
            self.map_jobid_to_slurm_files.pop(jobid)

    def submit(
        self,
        fun: Callable[..., Any],
        *fun_args: Sequence[Any],
        slurm_config: SlurmConfig,
        task_files: TaskFiles,
        **fun_kwargs: dict,
    ) -> Future:
        """
        Submit a function for execution on `FractalSlurmExecutor`

        Arguments:
            fun: The function to be executed
            fun_args: Function positional arguments
            fun_kwargs: Function keyword arguments
            slurm_config:
                A `SlurmConfig` object.
            task_files:
                A `TaskFiles` object.

        Returns:
            Future representing the execution of the current SLURM job.
        """

        # Do not continue if auxiliary thread was shut down
        if self.wait_thread.shutdown:
            error_msg = "Cannot call `submit` method after executor shutdown"
            logger.warning(error_msg)
            raise JobExecutionError(info=error_msg)

        # Set slurm_file_prefix
        slurm_file_prefix = task_files.file_prefix

        # Include common_script_lines in extra_lines
        logger.debug(
            f"Adding {self.common_script_lines=} to "
            f"{slurm_config.extra_lines=}, from submit method."
        )
        current_extra_lines = slurm_config.extra_lines or []
        slurm_config.extra_lines = (
            current_extra_lines + self.common_script_lines
        )

        # Adapt slurm_config to the fact that this is a single-task SlurmJob
        # instance
        slurm_config.tasks_per_job = 1
        slurm_config.parallel_tasks_per_job = 1

        fut = self._submit_job(
            fun,
            slurm_config=slurm_config,
            slurm_file_prefix=slurm_file_prefix,
            task_files=task_files,
            single_task_submission=True,
            args=fun_args,
            kwargs=fun_kwargs,
        )
        return fut

    def map(
        self,
        fn: Callable[..., Any],
        iterable: list[Sequence[Any]],
        *,
        slurm_config: SlurmConfig,
        task_files: TaskFiles,
    ):
        """
        Return an iterator with the results of several execution of a function

        This function is based on `concurrent.futures.Executor.map` from Python
        Standard Library 3.11.
        Original Copyright 2009 Brian Quinlan. All Rights Reserved. Licensed to
        PSF under a Contributor Agreement.

        Main modifications from the PSF function:

        1. Only `fn` and `iterable` can be assigned as positional arguments;
        2. `*iterables` argument replaced with a single `iterable`;
        3. `timeout` and `chunksize` arguments are not supported.

        Arguments:
            fn:
                The function to be executed
            iterable:
                An iterable such that each element is the list of arguments to
                be passed to `fn`, as in `fn(*args)`.
            slurm_config:
                A `SlurmConfig` object.
            task_files:
                A `TaskFiles` object.

        """

        # Do not continue if auxiliary thread was shut down
        if self.wait_thread.shutdown:
            error_msg = "Cannot call `map` method after executor shutdown"
            logger.warning(error_msg)
            raise JobExecutionError(info=error_msg)

        def _result_or_cancel(fut):
            """
            This function is based on the Python Standard Library 3.11.
            Original Copyright 2009 Brian Quinlan. All Rights Reserved.
            Licensed to PSF under a Contributor Agreement.
            """
            try:
                try:
                    return fut.result()
                finally:
                    fut.cancel()
            finally:
                # Break a reference cycle with the exception in
                # self._exception
                del fut

        # Include common_script_lines in extra_lines
        logger.debug(
            f"Adding {self.common_script_lines=} to "
            f"{slurm_config.extra_lines=}, from map method."
        )
        current_extra_lines = slurm_config.extra_lines or []
        slurm_config.extra_lines = (
            current_extra_lines + self.common_script_lines
        )

        # Set file prefixes
        general_slurm_file_prefix = str(task_files.task_order)

        # Transform iterable into a list and count its elements
        list_args = list(iterable)
        tot_tasks = len(list_args)

        # Set/validate parameters for task batching
        tasks_per_job, parallel_tasks_per_job = heuristics(
            # Number of parallel components (always known)
            tot_tasks=len(list_args),
            # Optional WorkflowTask attributes:
            tasks_per_job=slurm_config.tasks_per_job,
            parallel_tasks_per_job=slurm_config.parallel_tasks_per_job,  # noqa
            # Task requirements (multiple possible sources):
            cpus_per_task=slurm_config.cpus_per_task,
            mem_per_task=slurm_config.mem_per_task_MB,
            # Fractal configuration variables (soft/hard limits):
            target_cpus_per_job=slurm_config.target_cpus_per_job,
            target_mem_per_job=slurm_config.target_mem_per_job,
            target_num_jobs=slurm_config.target_num_jobs,
            max_cpus_per_job=slurm_config.max_cpus_per_job,
            max_mem_per_job=slurm_config.max_mem_per_job,
            max_num_jobs=slurm_config.max_num_jobs,
        )
        slurm_config.parallel_tasks_per_job = parallel_tasks_per_job
        slurm_config.tasks_per_job = tasks_per_job

        # Divide arguments in batches of `n_tasks_per_script` tasks each
        args_batches = []
        batch_size = tasks_per_job
        for ind_chunk in range(0, tot_tasks, batch_size):
            args_batches.append(
                list_args[ind_chunk : ind_chunk + batch_size]  # noqa
            )
        if len(args_batches) != math.ceil(tot_tasks / tasks_per_job):
            raise RuntimeError("Something wrong here while batching tasks")

        # Fetch configuration variable
        settings = Inject(get_settings)
        FRACTAL_SLURM_SBATCH_SLEEP = settings.FRACTAL_SLURM_SBATCH_SLEEP

        # Construct list of futures (one per SLURM job, i.e. one per batch)
        fs = []
        current_component_index = 0
        for ind_batch, batch in enumerate(args_batches):
            batch_size = len(batch)
            this_slurm_file_prefix = (
                f"{general_slurm_file_prefix}_batch_{ind_batch:06d}"
            )
            fs.append(
                self._submit_job(
                    fn,
                    slurm_config=slurm_config,
                    slurm_file_prefix=this_slurm_file_prefix,
                    task_files=task_files,
                    single_task_submission=False,
                    components=batch,
                )
            )
            current_component_index += batch_size
            time.sleep(FRACTAL_SLURM_SBATCH_SLEEP)

        # Yield must be hidden in closure so that the futures are submitted
        # before the first iterator value is required.
        # NOTE: In this custom map() method, _result_or_cancel(fs.pop()) is an
        # iterable of results (if successful), and we should yield its elements
        # rather than the whole iterable.
        def result_iterator():
            """
            This function is based on the Python Standard Library 3.11.
            Original Copyright 2009 Brian Quinlan. All Rights Reserved.
            Licensed to PSF under a Contributor Agreement.
            """
            try:
                # reverse to keep finishing order
                fs.reverse()
                while fs:
                    # Careful not to keep a reference to the popped future
                    results = _result_or_cancel(fs.pop())
                    for res in results:
                        yield res
            finally:
                for future in fs:
                    future.cancel()

        return result_iterator()

    def _submit_job(
        self,
        fun: Callable[..., Any],
        slurm_file_prefix: str,
        task_files: TaskFiles,
        slurm_config: SlurmConfig,
        single_task_submission: bool = False,
        args: Optional[Sequence[Any]] = None,
        kwargs: Optional[dict] = None,
        components: Optional[list[Any]] = None,
    ) -> Future:
        """
        Submit a multi-task job to the pool, where each task is handled via the
        pickle/remote logic

        NOTE: this method has different behaviors when it is called from the
        `self.submit` or `self.map` methods (which is also encoded in
        `single_task_submission`):

        * When called from `self.submit`, it supports general `args` and
          `kwargs` arguments;
        * When called from `self.map`, there cannot be any `args` or `kwargs`
          argument, but there must be a `components` argument.

        Arguments:
            fun:
            slurm_file_prefix:
            task_files:
            slurm_config:
            single_task_submission:
            args:
            kwargs:
            components:

        Returns:
            Future representing the execution of the current SLURM job.
        """

        # Prevent calling sbatch if auxiliary thread was shut down
        if self.wait_thread.shutdown:
            error_msg = (
                "Cannot call `_submit_job` method after executor shutdown"
            )
            logger.warning(error_msg)
            raise JobExecutionError(info=error_msg)

        fut: Future = Future()

        # Inject SLURM account (if set) into slurm_config
        if self.slurm_account:
            slurm_config.account = self.slurm_account

        # Define slurm-job-related files
        if single_task_submission:
            if components is not None:
                raise ValueError(
                    f"{single_task_submission=} but components is not None"
                )
            job = SlurmJob(
                slurm_file_prefix=slurm_file_prefix,
                num_tasks_tot=1,
                slurm_config=slurm_config,
            )
            if job.num_tasks_tot > 1:
                raise ValueError(
                    "{single_task_submission=} but {job.num_tasks_tot=}"
                )
            job.single_task_submission = True
            job.wftask_file_prefixes = (task_files.file_prefix,)
            job.wftask_subfolder_name = task_files.subfolder_name

        else:
            if not components or len(components) < 1:
                raise ValueError(
                    "In FractalSlurmExecutor._submit_job, given "
                    f"{components=}."
                )
            num_tasks_tot = len(components)
            job = SlurmJob(
                slurm_file_prefix=slurm_file_prefix,
                num_tasks_tot=num_tasks_tot,
                slurm_config=slurm_config,
            )

            _prefixes = []
            _subfolder_names = []
            for component in components:
                if isinstance(component, dict):
                    # This is needed for V2
                    actual_component = component.get(_COMPONENT_KEY_, None)
                else:
                    actual_component = component
                _task_file_paths = get_task_file_paths(
                    workflow_dir_local=task_files.workflow_dir_local,
                    workflow_dir_remote=task_files.workflow_dir_remote,
                    task_name=task_files.task_name,
                    task_order=task_files.task_order,
                    component=actual_component,
                )
                _prefixes.append(_task_file_paths.file_prefix)
                _subfolder_names.append(_task_file_paths.subfolder_name)
            job.wftask_file_prefixes = tuple(_prefixes)

            num_subfolders = len(set(_subfolder_names))
            if num_subfolders != 1:
                error_msg_short = (
                    f"[_submit_job] Subfolder list has {num_subfolders} "
                    "different values, but it must have only one (since "
                    "workflow tasks are executed one by one)."
                )
                error_msg_detail = (
                    "[_submit_job] Current unique subfolder names: "
                    f"{set(_subfolder_names)}"
                )
                logger.error(error_msg_short)
                logger.error(error_msg_detail)
                raise ValueError(error_msg_short)
            job.wftask_subfolder_name = _subfolder_names[0]

        # Check that server-side subfolder exists
        subfolder_path = self.workflow_dir_local / job.wftask_subfolder_name
        if not subfolder_path.exists():
            raise FileNotFoundError(
                f"Missing folder {subfolder_path.as_posix()}."
            )

        job.input_pickle_files = tuple(
            get_pickle_file_path(
                arg=job.workerids[ind],
                workflow_dir=self.workflow_dir_local,
                subfolder_name=job.wftask_subfolder_name,
                in_or_out="in",
                prefix=job.wftask_file_prefixes[ind],
            )
            for ind in range(job.num_tasks_tot)
        )
        job.output_pickle_files = tuple(
            get_pickle_file_path(
                arg=job.workerids[ind],
                workflow_dir=self.workflow_dir_remote,
                subfolder_name=job.wftask_subfolder_name,
                in_or_out="out",
                prefix=job.wftask_file_prefixes[ind],
            )
            for ind in range(job.num_tasks_tot)
        )
        # Define SLURM-job file names/paths
        job.slurm_script = get_slurm_script_file_path(
            workflow_dir=self.workflow_dir_local,
            subfolder_name=job.wftask_subfolder_name,
            prefix=job.slurm_file_prefix,
        )
        job.slurm_stdout = get_slurm_file_path(
            workflow_dir=self.workflow_dir_remote,
            subfolder_name=job.wftask_subfolder_name,
            out_or_err="out",
            prefix=job.slurm_file_prefix,
        )
        job.slurm_stderr = get_slurm_file_path(
            workflow_dir=self.workflow_dir_remote,
            subfolder_name=job.wftask_subfolder_name,
            out_or_err="err",
            prefix=job.slurm_file_prefix,
        )

        # Dump serialized versions+function+args+kwargs to pickle
        versions = dict(
            python=sys.version_info[:3],
            cloudpickle=cloudpickle.__version__,
            fractal_server=__VERSION__,
        )
        if job.single_task_submission:
            _args = args or []
            _kwargs = kwargs or {}
            funcser = cloudpickle.dumps((versions, fun, _args, _kwargs))
            with open(job.input_pickle_files[0], "wb") as f:
                f.write(funcser)
        else:
            for ind_component, component in enumerate(components):
                _args = [component]
                _kwargs = {}
                funcser = cloudpickle.dumps((versions, fun, _args, _kwargs))
                with open(job.input_pickle_files[ind_component], "wb") as f:
                    f.write(funcser)

        # Submit job to SLURM, and get jobid
        jobid, job = self._start(job)

        # Add the SLURM script/out/err paths to map_jobid_to_slurm_files (this
        # must be after self._start(job), so that "%j" has already been
        # replaced with the job ID)
        with self.jobs_lock:
            self.map_jobid_to_slurm_files[jobid] = (
                job.slurm_script.as_posix(),
                job.slurm_stdout.as_posix(),
                job.slurm_stderr.as_posix(),
            )

        # Thread will wait for it to finish.
        self.wait_thread.wait(
            filenames=job.get_clean_output_pickle_files(),
            jobid=jobid,
        )

        with self.jobs_lock:
            self.jobs[jobid] = (fut, job)
        return fut

    def _prepare_JobExecutionError(
        self, jobid: str, info: str
    ) -> JobExecutionError:
        """
        Prepare the `JobExecutionError` for a given job

        This method creates a `JobExecutionError` object and sets its attribute
        to the appropriate SLURM-related file names. Note that the method
        should always be called after values in `self.map_jobid_to_slurm_files`
        have been updated, so that they point to `self.workflow_dir_local`
        files which are readable from `fractal-server`.

        Arguments:
            jobid:
                ID of the SLURM job.
            info:
        """
        # Extract SLURM file paths
        with self.jobs_lock:
            (
                slurm_script_file,
                slurm_stdout_file,
                slurm_stderr_file,
            ) = self.map_jobid_to_slurm_files[jobid]
        # Construct JobExecutionError exception
        job_exc = JobExecutionError(
            cmd_file=slurm_script_file,
            stdout_file=slurm_stdout_file,
            stderr_file=slurm_stderr_file,
            info=info,
        )
        return job_exc

    def _completion(self, jobid: str) -> None:
        """
        Callback function to be executed whenever a job finishes.

        This function is executed by self.wait_thread (triggered by either
        finding an existing output pickle file `out_path` or finding that the
        SLURM job is over). Since this takes place on a different thread,
        failures may not be captured by the main thread; we use a broad
        try/except block, so that those exceptions are reported to the main
        thread via `fut.set_exception(...)`.

        Arguments:
            jobid: ID of the SLURM job
        """
        # Handle all uncaught exceptions in this broad try/except block
        try:
            # Retrieve job
            with self.jobs_lock:
                try:
                    fut, job = self.jobs.pop(jobid)
                except KeyError:
                    return
                if not self.jobs:
                    self.jobs_empty_cond.notify_all()

            # Copy all relevant files from self.workflow_dir_remote to
            # self.workflow_dir_local

            self._copy_files_from_remote_to_local(job)

            # Update the paths to use the files in self.workflow_dir_local
            # (rather than the user's ones in self.workflow_dir_remote)
            with self.jobs_lock:
                self.map_jobid_to_slurm_files[jobid]
                (
                    slurm_script_file,
                    slurm_stdout_file,
                    slurm_stderr_file,
                ) = self.map_jobid_to_slurm_files[jobid]
            new_slurm_stdout_file = str(
                self.workflow_dir_local
                / job.wftask_subfolder_name
                / Path(slurm_stdout_file).name
            )
            new_slurm_stderr_file = str(
                self.workflow_dir_local
                / job.wftask_subfolder_name
                / Path(slurm_stderr_file).name
            )
            with self.jobs_lock:
                self.map_jobid_to_slurm_files[jobid] = (
                    slurm_script_file,
                    new_slurm_stdout_file,
                    new_slurm_stderr_file,
                )

            in_paths = job.input_pickle_files
            out_paths = tuple(
                (self.workflow_dir_local / job.wftask_subfolder_name / f.name)
                for f in job.output_pickle_files
            )

            outputs = []
            for ind_out_path, out_path in enumerate(out_paths):
                in_path = in_paths[ind_out_path]

                # The output pickle file may be missing because of some slow
                # filesystem operation; wait some time before considering it as
                # missing
                if not out_path.exists():
                    settings = Inject(get_settings)
                    time.sleep(settings.FRACTAL_SLURM_ERROR_HANDLING_INTERVAL)
                if not out_path.exists():
                    # Output pickle file is missing
                    info = (
                        "Output pickle file of the FractalSlurmExecutor job "
                        "not found.\n"
                        f"Expected file path: {str(out_path)}.\n"
                        "Here are some possible reasons:\n"
                        "1. The SLURM job was scancel-ed, either by the user "
                        "or due to an error (e.g. an out-of-memory or timeout "
                        "error). Note that if the scancel took place before "
                        "the job started running, the SLURM out/err files "
                        "will be empty.\n"
                        "2. Some error occurred upon writing the file to disk "
                        "(e.g. because there is not enough space on disk, or "
                        "due to an overloaded NFS filesystem). "
                        "Note that the server configuration has "
                        "FRACTAL_SLURM_ERROR_HANDLING_INTERVAL="
                        f"{settings.FRACTAL_SLURM_ERROR_HANDLING_INTERVAL} "
                        "seconds.\n"
                    )
                    job_exc = self._prepare_JobExecutionError(jobid, info=info)
                    try:
                        fut.set_exception(job_exc)
                        return
                    except InvalidStateError:
                        logger.warning(
                            f"Future {fut} (SLURM job ID: {jobid}) was already"
                            " cancelled, exit from"
                            " FractalSlurmExecutor._completion."
                        )
                        if not self.keep_pickle_files:
                            in_path.unlink()
                        self._cleanup(jobid)
                        return

                # Read the task output (note: we now know that out_path exists)
                with out_path.open("rb") as f:
                    outdata = f.read()
                # Note: output can be either the task result (typically a
                # dictionary) or an ExceptionProxy object; in the latter
                # case, the ExceptionProxy definition is also part of the
                # pickle file (thanks to cloudpickle.dumps).
                success, output = cloudpickle.loads(outdata)
                try:
                    if success:
                        outputs.append(output)
                    else:
                        proxy = output
                        if proxy.exc_type_name == "JobExecutionError":
                            job_exc = self._prepare_JobExecutionError(
                                jobid, info=proxy.kwargs.get("info", None)
                            )
                            fut.set_exception(job_exc)
                            return
                        else:
                            # This branch catches both TaskExecutionError's
                            # (coming from the typical fractal-server
                            # execution of tasks, and with additional
                            # fractal-specific kwargs) or arbitrary
                            # exceptions (coming from a direct use of
                            # FractalSlurmExecutor, possibly outside
                            # fractal-server)
                            kwargs = {}
                            for key in [
                                "workflow_task_id",
                                "workflow_task_order",
                                "task_name",
                            ]:
                                if key in proxy.kwargs.keys():
                                    kwargs[key] = proxy.kwargs[key]
                            exc = TaskExecutionError(proxy.tb, **kwargs)
                            fut.set_exception(exc)
                            return
                    if not self.keep_pickle_files:
                        out_path.unlink()
                except InvalidStateError:
                    logger.warning(
                        f"Future {fut} (SLURM job ID: {jobid}) was already"
                        " cancelled, exit from"
                        " FractalSlurmExecutor._completion."
                    )
                    if not self.keep_pickle_files:
                        out_path.unlink()
                        in_path.unlink()
                    self._cleanup(jobid)
                    return

                # Clean up input pickle file
                if not self.keep_pickle_files:
                    in_path.unlink()
            self._cleanup(jobid)
            if job.single_task_submission:
                fut.set_result(outputs[0])
            else:
                fut.set_result(outputs)
            return

        except Exception as e:
            try:
                fut.set_exception(e)
                return
            except InvalidStateError:
                logger.warning(
                    f"Future {fut} (SLURM job ID: {jobid}) was already"
                    " cancelled, exit from"
                    " FractalSlurmExecutor._completion."
                )

    def _copy_files_from_remote_to_local(
        self,
        job: SlurmJob,
    ):
        """
        Impersonate the user and copy task-related files

        For all files in `self.workflow_dir_remote` that start with
        `job.file_prefix`, read them (with `sudo -u` impersonation) and write
        them to `self.workflow_dir_local`.

        Files to copy:
        * Job-related files (SLURM stderr/stdout files); with prefix
          `job.slurm_file_prefix`;
        * Task-related files (stderr/stdout, args.json, metadiff.json, output
          pickle), with prefixes `job.wftask_file_prefixes`.

        Arguments:
            job:
                `SlurmJob` object (needed for its prefixes-related attributes).

        Raises:
            JobExecutionError: If a `cat` command fails.
        """
        logger.debug("[_copy_files_from_remote_to_local] Start")

        if self.workflow_dir_remote == self.workflow_dir_local:
            logger.debug(
                "[_copy_files_from_remote_to_local] "
                "workflow_dir_local corresponds to workflow_dir_remote, "
                "return."
            )
            return

        subfolder_name = job.wftask_subfolder_name
        prefixes = set(
            [job.slurm_file_prefix] + list(job.wftask_file_prefixes)
        )

        logger.debug(
            "[_copy_files_from_remote_to_local] "
            f"WorkflowTask subfolder_name: {subfolder_name}"
        )
        logger.debug(f"[_copy_files_from_remote_to_local] {prefixes=}")
        logger.debug(
            "[_copy_files_from_remote_to_local] "
            f"{str(self.workflow_dir_remote)=}"
        )

        for prefix in prefixes:
            if prefix == job.slurm_file_prefix:
                files_to_copy = _glob_as_user(
                    folder=str(self.workflow_dir_remote / subfolder_name),
                    user=self.slurm_user,
                    startswith=prefix,
                )
            else:
                files_to_copy = _glob_as_user_strict(
                    folder=str(self.workflow_dir_remote / subfolder_name),
                    user=self.slurm_user,
                    startswith=prefix,
                )

            logger.debug(
                "[_copy_files_from_remote_to_local] "
                f"{prefix=}, {len(files_to_copy)=}"
            )

            for source_file_name in files_to_copy:
                if " " in source_file_name:
                    raise ValueError(
                        f'source_file_name="{source_file_name}" '
                        "contains whitespaces"
                    )
                source_file_path = str(
                    self.workflow_dir_remote
                    / subfolder_name
                    / source_file_name
                )

                # Read source_file_path (requires sudo)
                # NOTE: By setting encoding=None, we read/write bytes instead
                # of strings; this is needed to also handle pickle files.
                cmd = f"cat {source_file_path}"
                res = _run_command_as_user(
                    cmd=cmd, user=self.slurm_user, encoding=None
                )
                if res.returncode != 0:
                    info = (
                        f'Running cmd="{cmd}" as {self.slurm_user=} failed\n\n'
                        f"{res.returncode=}\n\n"
                        f"{res.stdout=}\n\n{res.stderr=}\n"
                    )
                    logger.error(info)
                    raise JobExecutionError(info)
                # Write to dest_file_path (including empty files)
                dest_file_path = str(
                    self.workflow_dir_local / subfolder_name / source_file_name
                )
                with open(dest_file_path, "wb") as f:
                    f.write(res.stdout)
        logger.debug("[_copy_files_from_remote_to_local] End")

    def _start(
        self,
        job: SlurmJob,
    ) -> tuple[str, SlurmJob]:
        """
        Submit function for execution on a SLURM cluster
        """

        # Prepare commands to be included in SLURM submission script
        settings = Inject(get_settings)
        python_worker_interpreter = (
            settings.FRACTAL_SLURM_WORKER_PYTHON or sys.executable
        )

        cmdlines = []
        for ind_task in range(job.num_tasks_tot):
            input_pickle_file = job.input_pickle_files[ind_task]
            output_pickle_file = job.output_pickle_files[ind_task]
            cmdlines.append(
                (
                    f"{python_worker_interpreter}"
                    " -m fractal_server.app.runner.executors.slurm.remote "
                    f"--input-file {input_pickle_file} "
                    f"--output-file {output_pickle_file}"
                )
            )

        # ...
        sbatch_script = self._prepare_sbatch_script(
            slurm_config=job.slurm_config,
            list_commands=cmdlines,
            slurm_out_path=str(job.slurm_stdout),
            slurm_err_path=str(job.slurm_stderr),
        )

        # Print warning for ignored parameter
        if len(job.slurm_config.pre_submission_commands) > 0:
            logger.warning(
                f"Ignoring {job.slurm_config.pre_submission_commands=}."
            )

        # Submit job via sbatch, and retrieve jobid

        # Write script content to a job.slurm_script
        with job.slurm_script.open("w") as f:
            f.write(sbatch_script)

        # Prepare submission command
        pre_command = f"sudo --set-home --non-interactive -u {self.slurm_user}"
        submit_command = f"sbatch --parsable {job.slurm_script}"
        full_command = f"{pre_command} {submit_command}"

        # Submit SLURM job and retrieve job ID
        output = _subprocess_run_or_raise(full_command)
        try:
            jobid = int(output.stdout)
        except ValueError as e:
            error_msg = (
                f"Submit command `{full_command}` returned "
                f"`{output.stdout=}` which cannot be cast to an integer "
                f"SLURM-job ID. Original error:\n{str(e)}"
            )
            logger.error(error_msg)
            raise JobExecutionError(info=error_msg)
        jobid_str = str(jobid)

        # Plug SLURM job id in stdout/stderr file paths
        job.slurm_stdout = Path(
            job.slurm_stdout.as_posix().replace("%j", jobid_str)
        )
        job.slurm_stderr = Path(
            job.slurm_stderr.as_posix().replace("%j", jobid_str)
        )

        return jobid_str, job

    def _prepare_sbatch_script(
        self,
        *,
        list_commands: list[str],
        slurm_out_path: str,
        slurm_err_path: str,
        slurm_config: SlurmConfig,
    ):
        num_tasks_max_running = slurm_config.parallel_tasks_per_job
        mem_per_task_MB = slurm_config.mem_per_task_MB

        # Set ntasks
        ntasks = min(len(list_commands), num_tasks_max_running)
        if len(list_commands) < num_tasks_max_running:
            ntasks = len(list_commands)
            slurm_config.parallel_tasks_per_job = ntasks
            logger.debug(
                f"{len(list_commands)=} is smaller than "
                f"{num_tasks_max_running=}. Setting {ntasks=}."
            )

        # Prepare SLURM preamble based on SlurmConfig object
        script_lines = slurm_config.to_sbatch_preamble(
            remote_export_dir=self.user_cache_dir
        )

        # Extend SLURM preamble with variable which are not in SlurmConfig, and
        # fix their order
        script_lines.extend(
            [
                f"#SBATCH --err={slurm_err_path}",
                f"#SBATCH --out={slurm_out_path}",
                f"#SBATCH -D {self.workflow_dir_remote}",
            ]
        )
        script_lines = slurm_config.sort_script_lines(script_lines)
        logger.debug(script_lines)

        # Always print output of `pwd`
        script_lines.append('echo "Working directory (pwd): `pwd`"\n')

        # Complete script preamble
        script_lines.append("\n")

        # Include command lines
        tmp_list_commands = copy(list_commands)
        while tmp_list_commands:
            if tmp_list_commands:
                cmd = tmp_list_commands.pop(0)  # take first element
                script_lines.append(
                    "srun --ntasks=1 --cpus-per-task=$SLURM_CPUS_PER_TASK "
                    f"--mem={mem_per_task_MB}MB "
                    f"{cmd} &"
                )
        script_lines.append("wait\n")

        script = "\n".join(script_lines)
        return script

    def shutdown(self, wait=True, *, cancel_futures=False):
        """
        Clean up all executor variables. Note that this function is executed on
        the self.wait_thread thread, see _completion.
        """

        logger.debug("Executor shutdown: start")

        # Handle all job futures
        slurm_jobs_to_scancel = []
        with self.jobs_lock:
            while self.jobs:
                jobid, fut_and_job = self.jobs.popitem()
                slurm_jobs_to_scancel.append(jobid)
                fut = fut_and_job[0]
                self.map_jobid_to_slurm_files.pop(jobid)
                if not fut.cancelled():
                    fut.set_exception(
                        JobExecutionError(
                            "Job cancelled due to executor shutdown."
                        )
                    )
                    fut.cancel()

        # Cancel SLURM jobs
        if slurm_jobs_to_scancel:
            scancel_string = " ".join(slurm_jobs_to_scancel)
            logger.warning(f"Now scancel-ing SLURM jobs {scancel_string}")
            pre_command = f"sudo --non-interactive -u {self.slurm_user}"
            submit_command = f"scancel {scancel_string}"
            full_command = f"{pre_command} {submit_command}"
            validate_cmd(full_command)
            logger.debug(f"Now execute `{full_command}`")
            try:
                subprocess.run(  # nosec
                    shlex.split(full_command),
                    capture_output=True,
                    check=True,
                    encoding="utf-8",
                )
            except subprocess.CalledProcessError as e:
                error_msg = (
                    f"Cancel command `{full_command}` failed. "
                    f"Original error:\n{str(e)}"
                )
                logger.error(error_msg)
                raise JobExecutionError(info=error_msg)

        # Redudantly set thread shutdown attribute to True
        self.wait_thread.shutdown = True

        logger.debug("Executor shutdown: end")

    def _stop_and_join_wait_thread(self):
        self.wait_thread.stop()
        self.wait_thread.join()

    def __exit__(self, *args, **kwargs):
        """
        See
        https://github.com/fractal-analytics-platform/fractal-server/issues/1508
        """
        logger.debug(
            "[FractalSlurmExecutor.__exit__] Stop and join `wait_thread`"
        )
        self._stop_and_join_wait_thread()
        logger.debug("[FractalSlurmExecutor.__exit__] End")

__exit__(*args, **kwargs)

See https://github.com/fractal-analytics-platform/fractal-server/issues/1508

Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
def __exit__(self, *args, **kwargs):
    """
    See
    https://github.com/fractal-analytics-platform/fractal-server/issues/1508
    """
    logger.debug(
        "[FractalSlurmExecutor.__exit__] Stop and join `wait_thread`"
    )
    self._stop_and_join_wait_thread()
    logger.debug("[FractalSlurmExecutor.__exit__] End")

__init__(slurm_user, workflow_dir_local, workflow_dir_remote, shutdown_file=None, user_cache_dir=None, common_script_lines=None, slurm_poll_interval=None, keep_pickle_files=False, slurm_account=None, *args, **kwargs)

Init method for FractalSlurmExecutor

Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
def __init__(
    self,
    slurm_user: str,
    workflow_dir_local: Path,
    workflow_dir_remote: Path,
    shutdown_file: Optional[str] = None,
    user_cache_dir: Optional[str] = None,
    common_script_lines: Optional[list[str]] = None,
    slurm_poll_interval: Optional[int] = None,
    keep_pickle_files: bool = False,
    slurm_account: Optional[str] = None,
    *args,
    **kwargs,
):
    """
    Init method for FractalSlurmExecutor
    """

    if not slurm_user:
        raise RuntimeError(
            "Missing attribute FractalSlurmExecutor.slurm_user"
        )

    super().__init__(*args, **kwargs)

    # Assign `wait_thread.shutdown_callback` early, since it may be called
    # from within `_stop_and_join_wait_thread` (e.g. if an exception is
    # raised within `__init__`).
    self.wait_thread.shutdown_callback = self.shutdown

    self.keep_pickle_files = keep_pickle_files
    self.slurm_user = slurm_user
    self.slurm_account = slurm_account

    self.common_script_lines = common_script_lines or []

    # Check that SLURM account is not set here
    try:
        invalid_line = next(
            line
            for line in self.common_script_lines
            if line.startswith("#SBATCH --account=")
        )
        self._stop_and_join_wait_thread()
        raise RuntimeError(
            "Invalid line in `FractalSlurmExecutor.common_script_lines`: "
            f"'{invalid_line}'.\n"
            "SLURM account must be set via the request body of the "
            "apply-workflow endpoint, or by modifying the user properties."
        )
    except StopIteration:
        pass

    self.workflow_dir_local = workflow_dir_local
    if not _path_exists_as_user(
        path=str(workflow_dir_remote), user=self.slurm_user
    ):
        logger.info(f"Missing folder {workflow_dir_remote=}")
    self.user_cache_dir = user_cache_dir

    self.workflow_dir_remote = workflow_dir_remote
    self.map_jobid_to_slurm_files = {}

    # Set the attribute slurm_poll_interval for self.wait_thread (see
    # cfut.SlurmWaitThread)
    if not slurm_poll_interval:
        settings = Inject(get_settings)
        slurm_poll_interval = settings.FRACTAL_SLURM_POLL_INTERVAL
    self.wait_thread.slurm_poll_interval = slurm_poll_interval
    self.wait_thread.slurm_user = self.slurm_user

    self.wait_thread.shutdown_file = (
        shutdown_file
        or (self.workflow_dir_local / SHUTDOWN_FILENAME).as_posix()
    )

_cleanup(jobid)

Given a job ID as returned by _start, perform any necessary cleanup after the job has finished.

Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
302
303
304
305
306
307
308
def _cleanup(self, jobid: str) -> None:
    """
    Given a job ID as returned by _start, perform any necessary
    cleanup after the job has finished.
    """
    with self.jobs_lock:
        self.map_jobid_to_slurm_files.pop(jobid)

_completion(jobid)

Callback function to be executed whenever a job finishes.

This function is executed by self.wait_thread (triggered by either finding an existing output pickle file out_path or finding that the SLURM job is over). Since this takes place on a different thread, failures may not be captured by the main thread; we use a broad try/except block, so that those exceptions are reported to the main thread via fut.set_exception(...).

Parameters:

Name Type Description Default
jobid str

ID of the SLURM job

required
Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
def _completion(self, jobid: str) -> None:
    """
    Callback function to be executed whenever a job finishes.

    This function is executed by self.wait_thread (triggered by either
    finding an existing output pickle file `out_path` or finding that the
    SLURM job is over). Since this takes place on a different thread,
    failures may not be captured by the main thread; we use a broad
    try/except block, so that those exceptions are reported to the main
    thread via `fut.set_exception(...)`.

    Arguments:
        jobid: ID of the SLURM job
    """
    # Handle all uncaught exceptions in this broad try/except block
    try:
        # Retrieve job
        with self.jobs_lock:
            try:
                fut, job = self.jobs.pop(jobid)
            except KeyError:
                return
            if not self.jobs:
                self.jobs_empty_cond.notify_all()

        # Copy all relevant files from self.workflow_dir_remote to
        # self.workflow_dir_local

        self._copy_files_from_remote_to_local(job)

        # Update the paths to use the files in self.workflow_dir_local
        # (rather than the user's ones in self.workflow_dir_remote)
        with self.jobs_lock:
            self.map_jobid_to_slurm_files[jobid]
            (
                slurm_script_file,
                slurm_stdout_file,
                slurm_stderr_file,
            ) = self.map_jobid_to_slurm_files[jobid]
        new_slurm_stdout_file = str(
            self.workflow_dir_local
            / job.wftask_subfolder_name
            / Path(slurm_stdout_file).name
        )
        new_slurm_stderr_file = str(
            self.workflow_dir_local
            / job.wftask_subfolder_name
            / Path(slurm_stderr_file).name
        )
        with self.jobs_lock:
            self.map_jobid_to_slurm_files[jobid] = (
                slurm_script_file,
                new_slurm_stdout_file,
                new_slurm_stderr_file,
            )

        in_paths = job.input_pickle_files
        out_paths = tuple(
            (self.workflow_dir_local / job.wftask_subfolder_name / f.name)
            for f in job.output_pickle_files
        )

        outputs = []
        for ind_out_path, out_path in enumerate(out_paths):
            in_path = in_paths[ind_out_path]

            # The output pickle file may be missing because of some slow
            # filesystem operation; wait some time before considering it as
            # missing
            if not out_path.exists():
                settings = Inject(get_settings)
                time.sleep(settings.FRACTAL_SLURM_ERROR_HANDLING_INTERVAL)
            if not out_path.exists():
                # Output pickle file is missing
                info = (
                    "Output pickle file of the FractalSlurmExecutor job "
                    "not found.\n"
                    f"Expected file path: {str(out_path)}.\n"
                    "Here are some possible reasons:\n"
                    "1. The SLURM job was scancel-ed, either by the user "
                    "or due to an error (e.g. an out-of-memory or timeout "
                    "error). Note that if the scancel took place before "
                    "the job started running, the SLURM out/err files "
                    "will be empty.\n"
                    "2. Some error occurred upon writing the file to disk "
                    "(e.g. because there is not enough space on disk, or "
                    "due to an overloaded NFS filesystem). "
                    "Note that the server configuration has "
                    "FRACTAL_SLURM_ERROR_HANDLING_INTERVAL="
                    f"{settings.FRACTAL_SLURM_ERROR_HANDLING_INTERVAL} "
                    "seconds.\n"
                )
                job_exc = self._prepare_JobExecutionError(jobid, info=info)
                try:
                    fut.set_exception(job_exc)
                    return
                except InvalidStateError:
                    logger.warning(
                        f"Future {fut} (SLURM job ID: {jobid}) was already"
                        " cancelled, exit from"
                        " FractalSlurmExecutor._completion."
                    )
                    if not self.keep_pickle_files:
                        in_path.unlink()
                    self._cleanup(jobid)
                    return

            # Read the task output (note: we now know that out_path exists)
            with out_path.open("rb") as f:
                outdata = f.read()
            # Note: output can be either the task result (typically a
            # dictionary) or an ExceptionProxy object; in the latter
            # case, the ExceptionProxy definition is also part of the
            # pickle file (thanks to cloudpickle.dumps).
            success, output = cloudpickle.loads(outdata)
            try:
                if success:
                    outputs.append(output)
                else:
                    proxy = output
                    if proxy.exc_type_name == "JobExecutionError":
                        job_exc = self._prepare_JobExecutionError(
                            jobid, info=proxy.kwargs.get("info", None)
                        )
                        fut.set_exception(job_exc)
                        return
                    else:
                        # This branch catches both TaskExecutionError's
                        # (coming from the typical fractal-server
                        # execution of tasks, and with additional
                        # fractal-specific kwargs) or arbitrary
                        # exceptions (coming from a direct use of
                        # FractalSlurmExecutor, possibly outside
                        # fractal-server)
                        kwargs = {}
                        for key in [
                            "workflow_task_id",
                            "workflow_task_order",
                            "task_name",
                        ]:
                            if key in proxy.kwargs.keys():
                                kwargs[key] = proxy.kwargs[key]
                        exc = TaskExecutionError(proxy.tb, **kwargs)
                        fut.set_exception(exc)
                        return
                if not self.keep_pickle_files:
                    out_path.unlink()
            except InvalidStateError:
                logger.warning(
                    f"Future {fut} (SLURM job ID: {jobid}) was already"
                    " cancelled, exit from"
                    " FractalSlurmExecutor._completion."
                )
                if not self.keep_pickle_files:
                    out_path.unlink()
                    in_path.unlink()
                self._cleanup(jobid)
                return

            # Clean up input pickle file
            if not self.keep_pickle_files:
                in_path.unlink()
        self._cleanup(jobid)
        if job.single_task_submission:
            fut.set_result(outputs[0])
        else:
            fut.set_result(outputs)
        return

    except Exception as e:
        try:
            fut.set_exception(e)
            return
        except InvalidStateError:
            logger.warning(
                f"Future {fut} (SLURM job ID: {jobid}) was already"
                " cancelled, exit from"
                " FractalSlurmExecutor._completion."
            )

_copy_files_from_remote_to_local(job)

Impersonate the user and copy task-related files

For all files in self.workflow_dir_remote that start with job.file_prefix, read them (with sudo -u impersonation) and write them to self.workflow_dir_local.

Files to copy: * Job-related files (SLURM stderr/stdout files); with prefix job.slurm_file_prefix; * Task-related files (stderr/stdout, args.json, metadiff.json, output pickle), with prefixes job.wftask_file_prefixes.

Parameters:

Name Type Description Default
job SlurmJob

SlurmJob object (needed for its prefixes-related attributes).

required

Raises:

Type Description
JobExecutionError

If a cat command fails.

Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
def _copy_files_from_remote_to_local(
    self,
    job: SlurmJob,
):
    """
    Impersonate the user and copy task-related files

    For all files in `self.workflow_dir_remote` that start with
    `job.file_prefix`, read them (with `sudo -u` impersonation) and write
    them to `self.workflow_dir_local`.

    Files to copy:
    * Job-related files (SLURM stderr/stdout files); with prefix
      `job.slurm_file_prefix`;
    * Task-related files (stderr/stdout, args.json, metadiff.json, output
      pickle), with prefixes `job.wftask_file_prefixes`.

    Arguments:
        job:
            `SlurmJob` object (needed for its prefixes-related attributes).

    Raises:
        JobExecutionError: If a `cat` command fails.
    """
    logger.debug("[_copy_files_from_remote_to_local] Start")

    if self.workflow_dir_remote == self.workflow_dir_local:
        logger.debug(
            "[_copy_files_from_remote_to_local] "
            "workflow_dir_local corresponds to workflow_dir_remote, "
            "return."
        )
        return

    subfolder_name = job.wftask_subfolder_name
    prefixes = set(
        [job.slurm_file_prefix] + list(job.wftask_file_prefixes)
    )

    logger.debug(
        "[_copy_files_from_remote_to_local] "
        f"WorkflowTask subfolder_name: {subfolder_name}"
    )
    logger.debug(f"[_copy_files_from_remote_to_local] {prefixes=}")
    logger.debug(
        "[_copy_files_from_remote_to_local] "
        f"{str(self.workflow_dir_remote)=}"
    )

    for prefix in prefixes:
        if prefix == job.slurm_file_prefix:
            files_to_copy = _glob_as_user(
                folder=str(self.workflow_dir_remote / subfolder_name),
                user=self.slurm_user,
                startswith=prefix,
            )
        else:
            files_to_copy = _glob_as_user_strict(
                folder=str(self.workflow_dir_remote / subfolder_name),
                user=self.slurm_user,
                startswith=prefix,
            )

        logger.debug(
            "[_copy_files_from_remote_to_local] "
            f"{prefix=}, {len(files_to_copy)=}"
        )

        for source_file_name in files_to_copy:
            if " " in source_file_name:
                raise ValueError(
                    f'source_file_name="{source_file_name}" '
                    "contains whitespaces"
                )
            source_file_path = str(
                self.workflow_dir_remote
                / subfolder_name
                / source_file_name
            )

            # Read source_file_path (requires sudo)
            # NOTE: By setting encoding=None, we read/write bytes instead
            # of strings; this is needed to also handle pickle files.
            cmd = f"cat {source_file_path}"
            res = _run_command_as_user(
                cmd=cmd, user=self.slurm_user, encoding=None
            )
            if res.returncode != 0:
                info = (
                    f'Running cmd="{cmd}" as {self.slurm_user=} failed\n\n'
                    f"{res.returncode=}\n\n"
                    f"{res.stdout=}\n\n{res.stderr=}\n"
                )
                logger.error(info)
                raise JobExecutionError(info)
            # Write to dest_file_path (including empty files)
            dest_file_path = str(
                self.workflow_dir_local / subfolder_name / source_file_name
            )
            with open(dest_file_path, "wb") as f:
                f.write(res.stdout)
    logger.debug("[_copy_files_from_remote_to_local] End")

_prepare_JobExecutionError(jobid, info)

Prepare the JobExecutionError for a given job

This method creates a JobExecutionError object and sets its attribute to the appropriate SLURM-related file names. Note that the method should always be called after values in self.map_jobid_to_slurm_files have been updated, so that they point to self.workflow_dir_local files which are readable from fractal-server.

Parameters:

Name Type Description Default
jobid str

ID of the SLURM job.

required
info str
required
Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
def _prepare_JobExecutionError(
    self, jobid: str, info: str
) -> JobExecutionError:
    """
    Prepare the `JobExecutionError` for a given job

    This method creates a `JobExecutionError` object and sets its attribute
    to the appropriate SLURM-related file names. Note that the method
    should always be called after values in `self.map_jobid_to_slurm_files`
    have been updated, so that they point to `self.workflow_dir_local`
    files which are readable from `fractal-server`.

    Arguments:
        jobid:
            ID of the SLURM job.
        info:
    """
    # Extract SLURM file paths
    with self.jobs_lock:
        (
            slurm_script_file,
            slurm_stdout_file,
            slurm_stderr_file,
        ) = self.map_jobid_to_slurm_files[jobid]
    # Construct JobExecutionError exception
    job_exc = JobExecutionError(
        cmd_file=slurm_script_file,
        stdout_file=slurm_stdout_file,
        stderr_file=slurm_stderr_file,
        info=info,
    )
    return job_exc

_start(job)

Submit function for execution on a SLURM cluster

Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
def _start(
    self,
    job: SlurmJob,
) -> tuple[str, SlurmJob]:
    """
    Submit function for execution on a SLURM cluster
    """

    # Prepare commands to be included in SLURM submission script
    settings = Inject(get_settings)
    python_worker_interpreter = (
        settings.FRACTAL_SLURM_WORKER_PYTHON or sys.executable
    )

    cmdlines = []
    for ind_task in range(job.num_tasks_tot):
        input_pickle_file = job.input_pickle_files[ind_task]
        output_pickle_file = job.output_pickle_files[ind_task]
        cmdlines.append(
            (
                f"{python_worker_interpreter}"
                " -m fractal_server.app.runner.executors.slurm.remote "
                f"--input-file {input_pickle_file} "
                f"--output-file {output_pickle_file}"
            )
        )

    # ...
    sbatch_script = self._prepare_sbatch_script(
        slurm_config=job.slurm_config,
        list_commands=cmdlines,
        slurm_out_path=str(job.slurm_stdout),
        slurm_err_path=str(job.slurm_stderr),
    )

    # Print warning for ignored parameter
    if len(job.slurm_config.pre_submission_commands) > 0:
        logger.warning(
            f"Ignoring {job.slurm_config.pre_submission_commands=}."
        )

    # Submit job via sbatch, and retrieve jobid

    # Write script content to a job.slurm_script
    with job.slurm_script.open("w") as f:
        f.write(sbatch_script)

    # Prepare submission command
    pre_command = f"sudo --set-home --non-interactive -u {self.slurm_user}"
    submit_command = f"sbatch --parsable {job.slurm_script}"
    full_command = f"{pre_command} {submit_command}"

    # Submit SLURM job and retrieve job ID
    output = _subprocess_run_or_raise(full_command)
    try:
        jobid = int(output.stdout)
    except ValueError as e:
        error_msg = (
            f"Submit command `{full_command}` returned "
            f"`{output.stdout=}` which cannot be cast to an integer "
            f"SLURM-job ID. Original error:\n{str(e)}"
        )
        logger.error(error_msg)
        raise JobExecutionError(info=error_msg)
    jobid_str = str(jobid)

    # Plug SLURM job id in stdout/stderr file paths
    job.slurm_stdout = Path(
        job.slurm_stdout.as_posix().replace("%j", jobid_str)
    )
    job.slurm_stderr = Path(
        job.slurm_stderr.as_posix().replace("%j", jobid_str)
    )

    return jobid_str, job

_submit_job(fun, slurm_file_prefix, task_files, slurm_config, single_task_submission=False, args=None, kwargs=None, components=None)

Submit a multi-task job to the pool, where each task is handled via the pickle/remote logic

NOTE: this method has different behaviors when it is called from the self.submit or self.map methods (which is also encoded in single_task_submission):

  • When called from self.submit, it supports general args and kwargs arguments;
  • When called from self.map, there cannot be any args or kwargs argument, but there must be a components argument.

Parameters:

Name Type Description Default
fun Callable[..., Any]
required
slurm_file_prefix str
required
task_files TaskFiles
required
slurm_config SlurmConfig
required
single_task_submission bool
False
args Optional[Sequence[Any]]
None
kwargs Optional[dict]
None
components Optional[list[Any]]
None

Returns:

Type Description
Future

Future representing the execution of the current SLURM job.

Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
def _submit_job(
    self,
    fun: Callable[..., Any],
    slurm_file_prefix: str,
    task_files: TaskFiles,
    slurm_config: SlurmConfig,
    single_task_submission: bool = False,
    args: Optional[Sequence[Any]] = None,
    kwargs: Optional[dict] = None,
    components: Optional[list[Any]] = None,
) -> Future:
    """
    Submit a multi-task job to the pool, where each task is handled via the
    pickle/remote logic

    NOTE: this method has different behaviors when it is called from the
    `self.submit` or `self.map` methods (which is also encoded in
    `single_task_submission`):

    * When called from `self.submit`, it supports general `args` and
      `kwargs` arguments;
    * When called from `self.map`, there cannot be any `args` or `kwargs`
      argument, but there must be a `components` argument.

    Arguments:
        fun:
        slurm_file_prefix:
        task_files:
        slurm_config:
        single_task_submission:
        args:
        kwargs:
        components:

    Returns:
        Future representing the execution of the current SLURM job.
    """

    # Prevent calling sbatch if auxiliary thread was shut down
    if self.wait_thread.shutdown:
        error_msg = (
            "Cannot call `_submit_job` method after executor shutdown"
        )
        logger.warning(error_msg)
        raise JobExecutionError(info=error_msg)

    fut: Future = Future()

    # Inject SLURM account (if set) into slurm_config
    if self.slurm_account:
        slurm_config.account = self.slurm_account

    # Define slurm-job-related files
    if single_task_submission:
        if components is not None:
            raise ValueError(
                f"{single_task_submission=} but components is not None"
            )
        job = SlurmJob(
            slurm_file_prefix=slurm_file_prefix,
            num_tasks_tot=1,
            slurm_config=slurm_config,
        )
        if job.num_tasks_tot > 1:
            raise ValueError(
                "{single_task_submission=} but {job.num_tasks_tot=}"
            )
        job.single_task_submission = True
        job.wftask_file_prefixes = (task_files.file_prefix,)
        job.wftask_subfolder_name = task_files.subfolder_name

    else:
        if not components or len(components) < 1:
            raise ValueError(
                "In FractalSlurmExecutor._submit_job, given "
                f"{components=}."
            )
        num_tasks_tot = len(components)
        job = SlurmJob(
            slurm_file_prefix=slurm_file_prefix,
            num_tasks_tot=num_tasks_tot,
            slurm_config=slurm_config,
        )

        _prefixes = []
        _subfolder_names = []
        for component in components:
            if isinstance(component, dict):
                # This is needed for V2
                actual_component = component.get(_COMPONENT_KEY_, None)
            else:
                actual_component = component
            _task_file_paths = get_task_file_paths(
                workflow_dir_local=task_files.workflow_dir_local,
                workflow_dir_remote=task_files.workflow_dir_remote,
                task_name=task_files.task_name,
                task_order=task_files.task_order,
                component=actual_component,
            )
            _prefixes.append(_task_file_paths.file_prefix)
            _subfolder_names.append(_task_file_paths.subfolder_name)
        job.wftask_file_prefixes = tuple(_prefixes)

        num_subfolders = len(set(_subfolder_names))
        if num_subfolders != 1:
            error_msg_short = (
                f"[_submit_job] Subfolder list has {num_subfolders} "
                "different values, but it must have only one (since "
                "workflow tasks are executed one by one)."
            )
            error_msg_detail = (
                "[_submit_job] Current unique subfolder names: "
                f"{set(_subfolder_names)}"
            )
            logger.error(error_msg_short)
            logger.error(error_msg_detail)
            raise ValueError(error_msg_short)
        job.wftask_subfolder_name = _subfolder_names[0]

    # Check that server-side subfolder exists
    subfolder_path = self.workflow_dir_local / job.wftask_subfolder_name
    if not subfolder_path.exists():
        raise FileNotFoundError(
            f"Missing folder {subfolder_path.as_posix()}."
        )

    job.input_pickle_files = tuple(
        get_pickle_file_path(
            arg=job.workerids[ind],
            workflow_dir=self.workflow_dir_local,
            subfolder_name=job.wftask_subfolder_name,
            in_or_out="in",
            prefix=job.wftask_file_prefixes[ind],
        )
        for ind in range(job.num_tasks_tot)
    )
    job.output_pickle_files = tuple(
        get_pickle_file_path(
            arg=job.workerids[ind],
            workflow_dir=self.workflow_dir_remote,
            subfolder_name=job.wftask_subfolder_name,
            in_or_out="out",
            prefix=job.wftask_file_prefixes[ind],
        )
        for ind in range(job.num_tasks_tot)
    )
    # Define SLURM-job file names/paths
    job.slurm_script = get_slurm_script_file_path(
        workflow_dir=self.workflow_dir_local,
        subfolder_name=job.wftask_subfolder_name,
        prefix=job.slurm_file_prefix,
    )
    job.slurm_stdout = get_slurm_file_path(
        workflow_dir=self.workflow_dir_remote,
        subfolder_name=job.wftask_subfolder_name,
        out_or_err="out",
        prefix=job.slurm_file_prefix,
    )
    job.slurm_stderr = get_slurm_file_path(
        workflow_dir=self.workflow_dir_remote,
        subfolder_name=job.wftask_subfolder_name,
        out_or_err="err",
        prefix=job.slurm_file_prefix,
    )

    # Dump serialized versions+function+args+kwargs to pickle
    versions = dict(
        python=sys.version_info[:3],
        cloudpickle=cloudpickle.__version__,
        fractal_server=__VERSION__,
    )
    if job.single_task_submission:
        _args = args or []
        _kwargs = kwargs or {}
        funcser = cloudpickle.dumps((versions, fun, _args, _kwargs))
        with open(job.input_pickle_files[0], "wb") as f:
            f.write(funcser)
    else:
        for ind_component, component in enumerate(components):
            _args = [component]
            _kwargs = {}
            funcser = cloudpickle.dumps((versions, fun, _args, _kwargs))
            with open(job.input_pickle_files[ind_component], "wb") as f:
                f.write(funcser)

    # Submit job to SLURM, and get jobid
    jobid, job = self._start(job)

    # Add the SLURM script/out/err paths to map_jobid_to_slurm_files (this
    # must be after self._start(job), so that "%j" has already been
    # replaced with the job ID)
    with self.jobs_lock:
        self.map_jobid_to_slurm_files[jobid] = (
            job.slurm_script.as_posix(),
            job.slurm_stdout.as_posix(),
            job.slurm_stderr.as_posix(),
        )

    # Thread will wait for it to finish.
    self.wait_thread.wait(
        filenames=job.get_clean_output_pickle_files(),
        jobid=jobid,
    )

    with self.jobs_lock:
        self.jobs[jobid] = (fut, job)
    return fut

map(fn, iterable, *, slurm_config, task_files)

Return an iterator with the results of several execution of a function

This function is based on concurrent.futures.Executor.map from Python Standard Library 3.11. Original Copyright 2009 Brian Quinlan. All Rights Reserved. Licensed to PSF under a Contributor Agreement.

Main modifications from the PSF function:

  1. Only fn and iterable can be assigned as positional arguments;
  2. *iterables argument replaced with a single iterable;
  3. timeout and chunksize arguments are not supported.

Parameters:

Name Type Description Default
fn Callable[..., Any]

The function to be executed

required
iterable list[Sequence[Any]]

An iterable such that each element is the list of arguments to be passed to fn, as in fn(*args).

required
slurm_config SlurmConfig

A SlurmConfig object.

required
task_files TaskFiles

A TaskFiles object.

required
Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
def map(
    self,
    fn: Callable[..., Any],
    iterable: list[Sequence[Any]],
    *,
    slurm_config: SlurmConfig,
    task_files: TaskFiles,
):
    """
    Return an iterator with the results of several execution of a function

    This function is based on `concurrent.futures.Executor.map` from Python
    Standard Library 3.11.
    Original Copyright 2009 Brian Quinlan. All Rights Reserved. Licensed to
    PSF under a Contributor Agreement.

    Main modifications from the PSF function:

    1. Only `fn` and `iterable` can be assigned as positional arguments;
    2. `*iterables` argument replaced with a single `iterable`;
    3. `timeout` and `chunksize` arguments are not supported.

    Arguments:
        fn:
            The function to be executed
        iterable:
            An iterable such that each element is the list of arguments to
            be passed to `fn`, as in `fn(*args)`.
        slurm_config:
            A `SlurmConfig` object.
        task_files:
            A `TaskFiles` object.

    """

    # Do not continue if auxiliary thread was shut down
    if self.wait_thread.shutdown:
        error_msg = "Cannot call `map` method after executor shutdown"
        logger.warning(error_msg)
        raise JobExecutionError(info=error_msg)

    def _result_or_cancel(fut):
        """
        This function is based on the Python Standard Library 3.11.
        Original Copyright 2009 Brian Quinlan. All Rights Reserved.
        Licensed to PSF under a Contributor Agreement.
        """
        try:
            try:
                return fut.result()
            finally:
                fut.cancel()
        finally:
            # Break a reference cycle with the exception in
            # self._exception
            del fut

    # Include common_script_lines in extra_lines
    logger.debug(
        f"Adding {self.common_script_lines=} to "
        f"{slurm_config.extra_lines=}, from map method."
    )
    current_extra_lines = slurm_config.extra_lines or []
    slurm_config.extra_lines = (
        current_extra_lines + self.common_script_lines
    )

    # Set file prefixes
    general_slurm_file_prefix = str(task_files.task_order)

    # Transform iterable into a list and count its elements
    list_args = list(iterable)
    tot_tasks = len(list_args)

    # Set/validate parameters for task batching
    tasks_per_job, parallel_tasks_per_job = heuristics(
        # Number of parallel components (always known)
        tot_tasks=len(list_args),
        # Optional WorkflowTask attributes:
        tasks_per_job=slurm_config.tasks_per_job,
        parallel_tasks_per_job=slurm_config.parallel_tasks_per_job,  # noqa
        # Task requirements (multiple possible sources):
        cpus_per_task=slurm_config.cpus_per_task,
        mem_per_task=slurm_config.mem_per_task_MB,
        # Fractal configuration variables (soft/hard limits):
        target_cpus_per_job=slurm_config.target_cpus_per_job,
        target_mem_per_job=slurm_config.target_mem_per_job,
        target_num_jobs=slurm_config.target_num_jobs,
        max_cpus_per_job=slurm_config.max_cpus_per_job,
        max_mem_per_job=slurm_config.max_mem_per_job,
        max_num_jobs=slurm_config.max_num_jobs,
    )
    slurm_config.parallel_tasks_per_job = parallel_tasks_per_job
    slurm_config.tasks_per_job = tasks_per_job

    # Divide arguments in batches of `n_tasks_per_script` tasks each
    args_batches = []
    batch_size = tasks_per_job
    for ind_chunk in range(0, tot_tasks, batch_size):
        args_batches.append(
            list_args[ind_chunk : ind_chunk + batch_size]  # noqa
        )
    if len(args_batches) != math.ceil(tot_tasks / tasks_per_job):
        raise RuntimeError("Something wrong here while batching tasks")

    # Fetch configuration variable
    settings = Inject(get_settings)
    FRACTAL_SLURM_SBATCH_SLEEP = settings.FRACTAL_SLURM_SBATCH_SLEEP

    # Construct list of futures (one per SLURM job, i.e. one per batch)
    fs = []
    current_component_index = 0
    for ind_batch, batch in enumerate(args_batches):
        batch_size = len(batch)
        this_slurm_file_prefix = (
            f"{general_slurm_file_prefix}_batch_{ind_batch:06d}"
        )
        fs.append(
            self._submit_job(
                fn,
                slurm_config=slurm_config,
                slurm_file_prefix=this_slurm_file_prefix,
                task_files=task_files,
                single_task_submission=False,
                components=batch,
            )
        )
        current_component_index += batch_size
        time.sleep(FRACTAL_SLURM_SBATCH_SLEEP)

    # Yield must be hidden in closure so that the futures are submitted
    # before the first iterator value is required.
    # NOTE: In this custom map() method, _result_or_cancel(fs.pop()) is an
    # iterable of results (if successful), and we should yield its elements
    # rather than the whole iterable.
    def result_iterator():
        """
        This function is based on the Python Standard Library 3.11.
        Original Copyright 2009 Brian Quinlan. All Rights Reserved.
        Licensed to PSF under a Contributor Agreement.
        """
        try:
            # reverse to keep finishing order
            fs.reverse()
            while fs:
                # Careful not to keep a reference to the popped future
                results = _result_or_cancel(fs.pop())
                for res in results:
                    yield res
        finally:
            for future in fs:
                future.cancel()

    return result_iterator()

shutdown(wait=True, *, cancel_futures=False)

Clean up all executor variables. Note that this function is executed on the self.wait_thread thread, see _completion.

Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
def shutdown(self, wait=True, *, cancel_futures=False):
    """
    Clean up all executor variables. Note that this function is executed on
    the self.wait_thread thread, see _completion.
    """

    logger.debug("Executor shutdown: start")

    # Handle all job futures
    slurm_jobs_to_scancel = []
    with self.jobs_lock:
        while self.jobs:
            jobid, fut_and_job = self.jobs.popitem()
            slurm_jobs_to_scancel.append(jobid)
            fut = fut_and_job[0]
            self.map_jobid_to_slurm_files.pop(jobid)
            if not fut.cancelled():
                fut.set_exception(
                    JobExecutionError(
                        "Job cancelled due to executor shutdown."
                    )
                )
                fut.cancel()

    # Cancel SLURM jobs
    if slurm_jobs_to_scancel:
        scancel_string = " ".join(slurm_jobs_to_scancel)
        logger.warning(f"Now scancel-ing SLURM jobs {scancel_string}")
        pre_command = f"sudo --non-interactive -u {self.slurm_user}"
        submit_command = f"scancel {scancel_string}"
        full_command = f"{pre_command} {submit_command}"
        validate_cmd(full_command)
        logger.debug(f"Now execute `{full_command}`")
        try:
            subprocess.run(  # nosec
                shlex.split(full_command),
                capture_output=True,
                check=True,
                encoding="utf-8",
            )
        except subprocess.CalledProcessError as e:
            error_msg = (
                f"Cancel command `{full_command}` failed. "
                f"Original error:\n{str(e)}"
            )
            logger.error(error_msg)
            raise JobExecutionError(info=error_msg)

    # Redudantly set thread shutdown attribute to True
    self.wait_thread.shutdown = True

    logger.debug("Executor shutdown: end")

submit(fun, *fun_args, slurm_config, task_files, **fun_kwargs)

Submit a function for execution on FractalSlurmExecutor

Parameters:

Name Type Description Default
fun Callable[..., Any]

The function to be executed

required
fun_args Sequence[Any]

Function positional arguments

()
fun_kwargs dict

Function keyword arguments

{}
slurm_config SlurmConfig

A SlurmConfig object.

required
task_files TaskFiles

A TaskFiles object.

required

Returns:

Type Description
Future

Future representing the execution of the current SLURM job.

Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
def submit(
    self,
    fun: Callable[..., Any],
    *fun_args: Sequence[Any],
    slurm_config: SlurmConfig,
    task_files: TaskFiles,
    **fun_kwargs: dict,
) -> Future:
    """
    Submit a function for execution on `FractalSlurmExecutor`

    Arguments:
        fun: The function to be executed
        fun_args: Function positional arguments
        fun_kwargs: Function keyword arguments
        slurm_config:
            A `SlurmConfig` object.
        task_files:
            A `TaskFiles` object.

    Returns:
        Future representing the execution of the current SLURM job.
    """

    # Do not continue if auxiliary thread was shut down
    if self.wait_thread.shutdown:
        error_msg = "Cannot call `submit` method after executor shutdown"
        logger.warning(error_msg)
        raise JobExecutionError(info=error_msg)

    # Set slurm_file_prefix
    slurm_file_prefix = task_files.file_prefix

    # Include common_script_lines in extra_lines
    logger.debug(
        f"Adding {self.common_script_lines=} to "
        f"{slurm_config.extra_lines=}, from submit method."
    )
    current_extra_lines = slurm_config.extra_lines or []
    slurm_config.extra_lines = (
        current_extra_lines + self.common_script_lines
    )

    # Adapt slurm_config to the fact that this is a single-task SlurmJob
    # instance
    slurm_config.tasks_per_job = 1
    slurm_config.parallel_tasks_per_job = 1

    fut = self._submit_job(
        fun,
        slurm_config=slurm_config,
        slurm_file_prefix=slurm_file_prefix,
        task_files=task_files,
        single_task_submission=True,
        args=fun_args,
        kwargs=fun_kwargs,
    )
    return fut

SlurmJob

Collect information related to a FractalSlurmExecutor job

This includes three groups of attributes:

  1. Attributes related to the (possibly multi-task) SLURM job, e.g. submission-file path.
  2. Attributes related to single tasks, e.g. the paths of their input/output pickle files.
  3. SLURM configuration options, encoded in a SlurmConfig object.

Note: A SlurmJob object is generally defined as a multi-task job. Jobs coming from the map method must have single_task_submission=False (even if num_tasks_tot=1), while jobs coming from submit must have it set to True.

Attributes:

Name Type Description
num_tasks_tot int

Total number of tasks to be executed as part of this SLURM job.

single_task_submission bool

This must be True for jobs submitted as part of the submit method, and False for jobs coming from the map method.

slurm_file_prefix str

Prefix for SLURM-job related files (submission script and SLURM stdout/stderr); this is also needed in the _copy_files_from_remote_to_local method.

wftask_file_prefixes tuple[str, ...]

Prefix for files that are created as part of the functions submitted for execution on the FractalSlurmExecutor; this is needed in the _copy_files_from_remote_to_local method, and also to construct the names of per-task input/output pickle files.

wftask_subfolder_name str

Name of the per-task subfolder (e.g. 7_task_name).

slurm_script Path

Path of SLURM submission script.

slurm_stdout Path

Path of SLURM stdout file; if this includes "%j", then this string will be replaced by the SLURM job ID upon sbatch submission.

slurm_stderr Path

Path of SLURM stderr file; see slurm_stdout concerning "%j".

workerids tuple[str, ...]

IDs that enter in the per-task input/output pickle files (one per task).

input_pickle_files tuple[Path, ...]

Input pickle files (one per task).

output_pickle_files tuple[Path, ...]

Output pickle files (one per task).

slurm_config SlurmConfig

SlurmConfig object.

Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
class SlurmJob:
    """
    Collect information related to a FractalSlurmExecutor job

    This includes three groups of attributes:

    1. Attributes related to the (possibly multi-task) SLURM job, e.g.
       submission-file path.
    2. Attributes related to single tasks, e.g. the paths of their input/output
       pickle files.
    3. SLURM configuration options, encoded in a SlurmConfig object.

    Note: A SlurmJob object is generally defined as a multi-task job. Jobs
    coming from the `map` method must have `single_task_submission=False` (even
    if `num_tasks_tot=1`), while jobs coming from `submit` must have it set to
    `True`.

    Attributes:
        num_tasks_tot:
            Total number of tasks to be executed as part of this SLURM job.
        single_task_submission:
            This must be `True` for jobs submitted as part of the `submit`
            method, and `False` for jobs coming from the `map` method.
        slurm_file_prefix:
            Prefix for SLURM-job related files (submission script and SLURM
            stdout/stderr); this is also needed in the
            `_copy_files_from_remote_to_local` method.
        wftask_file_prefixes:
            Prefix for files that are created as part of the functions
            submitted for execution on the `FractalSlurmExecutor`; this is
            needed in the `_copy_files_from_remote_to_local` method, and also
            to construct the names of per-task input/output pickle files.
        wftask_subfolder_name:
            Name of the per-task subfolder (e.g. `7_task_name`).
        slurm_script:
            Path of SLURM submission script.
        slurm_stdout:
            Path of SLURM stdout file; if this includes `"%j"`, then this
            string will be replaced by the SLURM job ID upon `sbatch`
            submission.
        slurm_stderr:
            Path of SLURM stderr file; see `slurm_stdout` concerning `"%j"`.
        workerids:
            IDs that enter in the per-task input/output pickle files (one per
            task).
        input_pickle_files:
            Input pickle files (one per task).
        output_pickle_files:
            Output pickle files (one per task).
        slurm_config:
            `SlurmConfig` object.
    """

    # Job-related attributes
    num_tasks_tot: int
    single_task_submission: bool
    slurm_file_prefix: str
    slurm_script: Path
    slurm_stdout: Path
    slurm_stderr: Path
    # Per-task attributes
    workerids: tuple[str, ...]
    wftask_file_prefixes: tuple[str, ...]
    wftask_subfolder_name: str
    input_pickle_files: tuple[Path, ...]
    output_pickle_files: tuple[Path, ...]
    # Slurm configuration
    slurm_config: SlurmConfig

    def __init__(
        self,
        num_tasks_tot: int,
        slurm_config: SlurmConfig,
        workflow_task_file_prefix: Optional[str] = None,
        slurm_file_prefix: Optional[str] = None,
        wftask_file_prefixes: Optional[tuple[str, ...]] = None,
        single_task_submission: bool = False,
    ):
        if single_task_submission and num_tasks_tot > 1:
            raise ValueError(
                "Trying to initialize SlurmJob with"
                f"{single_task_submission=} and {num_tasks_tot=}."
            )
        self.num_tasks_tot = num_tasks_tot
        self.single_task_submission = single_task_submission
        self.slurm_file_prefix = slurm_file_prefix or "default_slurm_prefix"
        if wftask_file_prefixes is None:
            self.wftask_file_prefixes = tuple(
                "default_wftask_prefix" for i in range(self.num_tasks_tot)
            )
        else:
            self.wftask_file_prefixes = wftask_file_prefixes
        self.workerids = tuple(
            random_string() for i in range(self.num_tasks_tot)
        )
        self.slurm_config = slurm_config

    def get_clean_output_pickle_files(self) -> tuple[str, ...]:
        """
        Transform all pathlib.Path objects in self.output_pickle_files to
        strings
        """
        return tuple(str(f.as_posix()) for f in self.output_pickle_files)

get_clean_output_pickle_files()

Transform all pathlib.Path objects in self.output_pickle_files to strings

Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
188
189
190
191
192
193
def get_clean_output_pickle_files(self) -> tuple[str, ...]:
    """
    Transform all pathlib.Path objects in self.output_pickle_files to
    strings
    """
    return tuple(str(f.as_posix()) for f in self.output_pickle_files)

_subprocess_run_or_raise(full_command)

Wrap subprocess.run and raise appropriate JobExecutionError if needed.

Parameters:

Name Type Description Default
full_command str

Full string of the command to execute.

required

Raises:

Type Description
JobExecutionError

If subprocess.run raises a CalledProcessError.

Returns:

Type Description
Optional[CompletedProcess]

The actual CompletedProcess output of subprocess.run.

Source code in fractal_server/app/runner/executors/slurm/sudo/executor.py
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
def _subprocess_run_or_raise(full_command: str) -> Optional[CompletedProcess]:
    """
    Wrap `subprocess.run` and raise  appropriate `JobExecutionError` if needed.

    Args:
        full_command: Full string of the command to execute.

    Raises:
        JobExecutionError: If `subprocess.run` raises a `CalledProcessError`.

    Returns:
        The actual `CompletedProcess` output of `subprocess.run`.
    """
    validate_cmd(full_command)
    try:
        output = subprocess.run(  # nosec
            shlex.split(full_command),
            capture_output=True,
            check=True,
            encoding="utf-8",
        )
        return output
    except subprocess.CalledProcessError as e:
        error_msg = (
            f"Submit command `{full_command}` failed. "
            f"Original error:\n{str(e)}\n"
            f"Original stdout:\n{e.stdout}\n"
            f"Original stderr:\n{e.stderr}\n"
        )
        logger.error(error_msg)
        raise JobExecutionError(info=error_msg)