handle_failed_job
Helper functions to handle Dataset history.
assemble_filters_failed_job(job)
¶
Assemble DatasetV2.filters
for a failed workflow-execution.
Assemble new value of filters
based on the last successful task, i.e.
based on the content of the temporary FILTERS_FILENAME
file. If the file
is missing, return None
.
Argumentss
job:
The failed JobV2
object.
Returns:
Type | Description |
---|---|
Optional[dict[str, Any]]
|
The new value of |
Optional[dict[str, Any]]
|
is missing. |
Source code in fractal_server/app/runner/v2/handle_failed_job.py
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
assemble_history_failed_job(job, dataset, workflow, logger_name=None, failed_wftask=None)
¶
Assemble history
after a workflow-execution job fails.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job |
JobV2
|
The failed |
required |
dataset |
DatasetV2
|
The |
required |
workflow |
WorkflowV2
|
The |
required |
logger_name |
Optional[str]
|
A logger name. |
None
|
failed_wftask |
Optional[WorkflowTaskV2]
|
If set, append it to |
None
|
Returns:
Type | Description |
---|---|
list[dict[str, Any]]
|
The new value of |
list[dict[str, Any]]
|
|
Source code in fractal_server/app/runner/v2/handle_failed_job.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
|
assemble_images_failed_job(job)
¶
Assemble DatasetV2.images
for a failed workflow-execution.
Assemble new value of images
based on the last successful task, i.e.
based on the content of the temporary IMAGES_FILENAME
file. If the file
is missing, return None
.
Argumentss
job:
The failed JobV2
object.
Returns:
Type | Description |
---|---|
Optional[dict[str, Any]]
|
The new value of |
Optional[dict[str, Any]]
|
is missing. |
Source code in fractal_server/app/runner/v2/handle_failed_job.py
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|