Skip to content

create_manifest

Script to generate JSON schemas for task arguments afresh, and write them to the package manifest.

create_manifest(package='fractal_tasks_core', manifest_version='2', has_args_schemas=True, docs_link=None, custom_pydantic_models=None)

This function creates the package manifest based on a task_list.py Python module located in the dev subfolder of the package, see an example of such list at ...

The manifest is then written to __FRACTAL_MANIFEST__.json, in the main package directory.

Note: a valid example of custom_pydantic_models would be

[
    ("my_task_package", "some_module.py", "SomeModel"),
]

PARAMETER DESCRIPTION
package

The name of the package (must be importable).

TYPE: str DEFAULT: 'fractal_tasks_core'

manifest_version

Only "2" is supported.

TYPE: str DEFAULT: '2'

has_args_schemas

Whether to autogenerate JSON Schemas for task arguments.

TYPE: bool DEFAULT: True

custom_pydantic_models

Custom models to be included when building JSON Schemas for task arguments.

TYPE: Optional[list[tuple[str, str, str]]] DEFAULT: None

Source code in fractal_tasks_core/dev/create_manifest.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def create_manifest(
    package: str = "fractal_tasks_core",
    manifest_version: str = "2",
    has_args_schemas: bool = True,
    docs_link: Optional[str] = None,
    custom_pydantic_models: Optional[list[tuple[str, str, str]]] = None,
):
    """
    This function creates the package manifest based on a `task_list.py`
    Python module located in the `dev` subfolder of the package, see an
    example of such list at ...

    The manifest is then written to `__FRACTAL_MANIFEST__.json`, in the
    main `package` directory.

    Note: a valid example of `custom_pydantic_models` would be
    ```
    [
        ("my_task_package", "some_module.py", "SomeModel"),
    ]
    ```

    Arguments:
        package: The name of the package (must be importable).
        manifest_version: Only `"2"` is supported.
        has_args_schemas:
            Whether to autogenerate JSON Schemas for task arguments.
        custom_pydantic_models:
            Custom models to be included when building JSON Schemas for task
            arguments.
    """

    # Preliminary check
    if manifest_version != "2":
        raise NotImplementedError(f"{manifest_version=} is not supported")

    logging.info("Start generating a new manifest")

    # Prepare an empty manifest
    manifest = dict(
        manifest_version=manifest_version,
        task_list=[],
        has_args_schemas=has_args_schemas,
    )
    if has_args_schemas:
        manifest["args_schema_version"] = ARGS_SCHEMA_VERSION

    # Prepare a default value of docs_link
    if package == "fractal_tasks_core" and docs_link is None:
        docs_link = (
            "https://fractal-analytics-platform.github.io/fractal-tasks-core"
        )

    # Import the task list from `dev/task_list.py`
    task_list_module = import_module(f"{package}.dev.task_list")
    TASK_LIST = getattr(task_list_module, "TASK_LIST")

    # Loop over TASK_LIST, and append the proper task dictionary
    # to manifest["task_list"]
    for task_obj in TASK_LIST:
        # Convert Pydantic object to dictionary
        task_dict = task_obj.model_dump(
            exclude={"meta_init", "executable_init", "meta", "executable"},
            exclude_unset=True,
        )

        # Copy some properties from `task_obj` to `task_dict`
        if task_obj.executable_non_parallel is not None:
            task_dict[
                "executable_non_parallel"
            ] = task_obj.executable_non_parallel
        if task_obj.executable_parallel is not None:
            task_dict["executable_parallel"] = task_obj.executable_parallel
        if task_obj.meta_non_parallel is not None:
            task_dict["meta_non_parallel"] = task_obj.meta_non_parallel
        if task_obj.meta_parallel is not None:
            task_dict["meta_parallel"] = task_obj.meta_parallel

        # Autogenerate JSON Schemas for non-parallel/parallel task arguments
        if has_args_schemas:
            for kind in ["non_parallel", "parallel"]:
                executable = task_dict.get(f"executable_{kind}")
                if executable is not None:
                    logging.info(f"[{executable}] START")
                    schema = create_schema_for_single_task(
                        executable,
                        package=package,
                        custom_pydantic_models=custom_pydantic_models,
                    )
                    logging.info(f"[{executable}] END (new schema)")
                    task_dict[f"args_schema_{kind}"] = schema

        # Update docs_info, based on task-function description
        docs_info = create_docs_info(
            executable_non_parallel=task_obj.executable_non_parallel,
            executable_parallel=task_obj.executable_parallel,
            package=package,
        )
        if docs_info is not None:
            task_dict["docs_info"] = docs_info
        if docs_link is not None:
            task_dict["docs_link"] = docs_link

        manifest["task_list"].append(task_dict)
        print()

    # Write manifest
    imported_package = import_module(package)
    manifest_path = (
        Path(imported_package.__file__).parent / "__FRACTAL_MANIFEST__.json"
    )
    with manifest_path.open("w") as f:
        json.dump(manifest, f, indent=2)
        f.write("\n")
    logging.info(f"Manifest stored in {manifest_path.as_posix()}")