apply_registration_to_image
Calculates translation for 2D image-based registration
apply_registration_to_image(*, zarr_url, registered_roi_table, reference_acquisition=0, overwrite_input=True)
¶
Apply registration to images by using a registered ROI table
This task consists of 4 parts:
- Mask all regions in images that are not available in the registered ROI table and store each acquisition aligned to the reference_acquisition (by looping over ROIs).
- Do the same for all label images.
- Copy all tables from the non-aligned image to the aligned image (currently only works well if the only tables are well & FOV ROI tables (registered and original). Not implemented for measurement tables and other ROI tables).
- Clean up: Delete the old, non-aligned image and rename the new, aligned image to take over its place.
PARAMETER | DESCRIPTION |
---|---|
zarr_url |
Path or url to the individual OME-Zarr image to be processed. (standard argument for Fractal tasks, managed by Fractal server).
TYPE:
|
registered_roi_table |
Name of the ROI table which has been registered
and will be applied to mask and shift the images.
Examples:
TYPE:
|
reference_acquisition |
Which acquisition to register against. Uses the OME-NGFF HCS well metadata acquisition keys to find the reference acquisition.
TYPE:
|
overwrite_input |
Whether the old image data should be replaced with the
newly registered image data. Currently only implemented for
TYPE:
|
Source code in fractal_tasks_core/tasks/apply_registration_to_image.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
write_registered_zarr(zarr_url, new_zarr_url, ROI_table, ROI_table_ref, num_levels, coarsening_xy=2, aggregation_function=np.mean)
¶
Write registered zarr array based on ROI tables
This function loads the image or label data from a zarr array based on the
ROI bounding-box coordinates and stores them into a new zarr array.
The new Zarr array has the same shape as the original array, but will have
0s where the ROI tables don't specify loading of the image data.
The ROIs loaded from list_indices
will be written into the
list_indices_ref
position, thus performing translational registration if
the two lists of ROI indices vary.
PARAMETER | DESCRIPTION |
---|---|
zarr_url |
Path or url to the individual OME-Zarr image to be used as the basis for the new OME-Zarr image.
TYPE:
|
new_zarr_url |
Path or url to the new OME-Zarr image to be written
TYPE:
|
ROI_table |
Fractal ROI table for the component
TYPE:
|
ROI_table_ref |
Fractal ROI table for the reference acquisition
TYPE:
|
num_levels |
Number of pyramid layers to be created (argument of
TYPE:
|
coarsening_xy |
Coarsening factor between pyramid levels
TYPE:
|
aggregation_function |
Function to be used when downsampling (argument
of |
Source code in fractal_tasks_core/tasks/apply_registration_to_image.py
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
|