58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243 | @validate_call
def cellvoyager_to_ome_zarr_compute(
*,
# Fractal parameters
zarr_url: str,
init_args: InitArgsCellVoyager,
chunk_sizes: ChunkSizes = Field(default_factory=ChunkSizes),
):
"""
Convert Yokogawa output (png, tif) to zarr file.
This task is run after an init task (typically
`cellvoyager_to_ome_zarr_init` or
`cellvoyager_to_ome_zarr_init_multiplex`), and it populates the empty
OME-Zarr files that were prepared.
Note that the current task always overwrites existing data. To avoid this
behavior, set the `overwrite` argument of the init task to `False`.
Args:
zarr_url: Path or url to the individual OME-Zarr image to be processed.
(standard argument for Fractal tasks, managed by Fractal server).
init_args: Intialization arguments provided by
`create_cellvoyager_ome_zarr_init`.
chunk_sizes: Used to overwrite the default chunk sizes for the
OME-Zarr. By default, the task will chunk the same as the
microscope field of view size, with 10 z planes per chunk.
For example, that can mean c: 1, z: 10, y: 2160, x:2560
"""
zarr_url = zarr_url.rstrip("/")
# Read attributes from NGFF metadata
ngff_image_meta = load_NgffImageMeta(zarr_url)
num_levels = ngff_image_meta.num_levels
coarsening_xy = ngff_image_meta.coarsening_xy
full_res_pxl_sizes_zyx = ngff_image_meta.get_pixel_sizes_zyx(level=0)
logger.info(f"NGFF image has {num_levels=}")
logger.info(f"NGFF image has {coarsening_xy=}")
logger.info(
f"NGFF image has full-res pixel sizes {full_res_pxl_sizes_zyx}"
)
channels: list[OmeroChannel] = get_omero_channel_list(
image_zarr_path=zarr_url
)
wavelength_ids = [c.wavelength_id for c in channels]
# Read useful information from ROI table
adata = read_zarr(f"{zarr_url}/tables/FOV_ROI_table")
fov_indices = convert_ROI_table_to_indices(
adata,
full_res_pxl_sizes_zyx=full_res_pxl_sizes_zyx,
)
check_valid_ROI_indices(fov_indices, "FOV_ROI_table")
adata_well = read_zarr(f"{zarr_url}/tables/well_ROI_table")
well_indices = convert_ROI_table_to_indices(
adata_well,
full_res_pxl_sizes_zyx=full_res_pxl_sizes_zyx,
)
check_valid_ROI_indices(well_indices, "well_ROI_table")
if len(well_indices) > 1:
raise ValueError(f"Something wrong with {well_indices=}")
max_z = well_indices[0][1]
max_y = well_indices[0][3]
max_x = well_indices[0][5]
# Load a single image, to retrieve useful information
include_patterns = [
f"{init_args.plate_prefix}_{init_args.well_ID}_*."
f"{init_args.image_extension}"
]
if init_args.include_glob_patterns:
include_patterns.extend(init_args.include_glob_patterns)
exclude_patterns = []
if init_args.exclude_glob_patterns:
exclude_patterns.extend(init_args.exclude_glob_patterns)
tmp_images = glob_with_multiple_patterns(
folder=init_args.image_dir,
include_patterns=include_patterns,
exclude_patterns=exclude_patterns,
)
sample = imread(tmp_images.pop())
# Initialize zarr
chunksize_default = {
"c": 1,
"z": 10,
"y": sample.shape[1],
"x": sample.shape[2],
}
chunksize = chunk_sizes.get_chunksize(chunksize_default=chunksize_default)
# chunksize["z"] =
canvas_zarr = zarr.create(
shape=(len(wavelength_ids), max_z, max_y, max_x),
chunks=chunksize,
dtype=sample.dtype,
store=zarr.storage.FSStore(zarr_url + "/0"),
overwrite=True,
dimension_separator="/",
)
# Loop over channels
for i_c, wavelength_id in enumerate(wavelength_ids):
A, C = wavelength_id.split("_")
include_patterns = [
f"{init_args.plate_prefix}_{init_args.well_ID}_*{A}*{C}*."
f"{init_args.image_extension}"
]
if init_args.include_glob_patterns:
include_patterns.extend(init_args.include_glob_patterns)
filenames_set = glob_with_multiple_patterns(
folder=init_args.image_dir,
include_patterns=include_patterns,
exclude_patterns=exclude_patterns,
)
filenames = sorted(list(filenames_set), key=sort_fun)
if len(filenames) == 0:
raise ValueError(
"Error in yokogawa_to_ome_zarr: len(filenames)=0.\n"
f" image_dir: {init_args.image_dir}\n"
f" wavelength_id: {wavelength_id},\n"
f" patterns: {include_patterns}\n"
f" exclusion patterns: {exclude_patterns}\n"
)
# Loop over 3D FOV ROIs
for indices in fov_indices:
s_z, e_z, s_y, e_y, s_x, e_x = indices[:]
region = (
slice(i_c, i_c + 1),
slice(s_z, e_z),
slice(s_y, e_y),
slice(s_x, e_x),
)
FOV_3D = da.concatenate(
[imread(img) for img in filenames[:e_z]],
)
FOV_4D = da.expand_dims(FOV_3D, axis=0)
filenames = filenames[e_z:]
da.array(FOV_4D).to_zarr(
url=canvas_zarr,
region=region,
compute=True,
)
# Starting from on-disk highest-resolution data, build and write to disk a
# pyramid of coarser levels
build_pyramid(
zarrurl=zarr_url,
overwrite=True,
num_levels=num_levels,
coarsening_xy=coarsening_xy,
chunksize=chunksize,
)
# Generate image list updates
# TODO: Can we check for dimensionality more robustly? Just checks for the
# last FOV of the last wavelength now
if FOV_4D.shape[-3] > 1:
is_3D = True
else:
is_3D = False
# FIXME: Get plate name from zarr_url => works for duplicate plate names
# with suffixes
print(zarr_url)
plate_name = zarr_url.split("/")[-4]
attributes = {
"plate": plate_name,
"well": init_args.well_ID,
}
if init_args.acquisition is not None:
attributes["acquisition"] = init_args.acquisition
image_list_updates = dict(
image_list_updates=[
dict(
zarr_url=zarr_url,
attributes=attributes,
types={"is_3D": is_3D},
)
]
)
return image_list_updates
|