Skip to content

napari_workflows_wrapper

Wrapper of napari-workflows.

OutOfTaskScopeError

Bases: NotImplementedError

Encapsulates features that are out-of-scope for the current wrapper task.

Source code in fractal_tasks_core/tasks/napari_workflows_wrapper.py
54
55
56
57
58
59
class OutOfTaskScopeError(NotImplementedError):
    """
    Encapsulates features that are out-of-scope for the current wrapper task.
    """

    pass

napari_workflows_wrapper(*, zarr_url, workflow_file, input_specs, output_specs, input_ROI_table='FOV_ROI_table', level=0, relabeling=True, expected_dimensions=3, overwrite=True)

Run a napari-workflow on the ROIs of a single OME-NGFF image.

This task takes images and labels and runs a napari-workflow on them that can produce a label and tables as output.

Examples of allowed entries for input_specs and output_specs:

input_specs = {
    "in_1": {"type": "image", "channel": {"wavelength_id": "A01_C02"}},
    "in_2": {"type": "image", "channel": {"label": "DAPI"}},
    "in_3": {"type": "label", "label_name": "label_DAPI"},
}

output_specs = {
    "out_1": {"type": "label", "label_name": "label_DAPI_new"},
    "out_2": {"type": "dataframe", "table_name": "measurements"},
}
PARAMETER DESCRIPTION
zarr_url

Path or url to the individual OME-Zarr image to be processed. (standard argument for Fractal tasks, managed by Fractal server).

TYPE: str

workflow_file

Absolute path to napari-workflows YAML file

TYPE: str

input_specs

A dictionary of NapariWorkflowsInput values.

TYPE: dict[str, NapariWorkflowsInput]

output_specs

A dictionary of NapariWorkflowsOutput values.

TYPE: dict[str, NapariWorkflowsOutput]

input_ROI_table

Name of the ROI table over which the task loops to apply napari workflows. Examples: FOV_ROI_table => loop over the field of views; organoid_ROI_table => loop over the organoid ROI table (generated by another task); well_ROI_table => process the whole well as one image.

TYPE: str DEFAULT: 'FOV_ROI_table'

level

Pyramid level of the image to be used as input for napari-workflows. Choose 0 to process at full resolution. Levels > 0 are currently only supported for workflows that only have intensity images as input and only produce a label images as output.

TYPE: int DEFAULT: 0

relabeling

If True, apply relabeling so that label values are unique across all ROIs in the well.

TYPE: bool DEFAULT: True

expected_dimensions

Expected dimensions (either 2 or 3). Useful when loading 2D images that are stored in a 3D array with shape (1, size_x, size_y) [which is the default way Fractal stores 2D images], but you want to make sure the napari workflow gets a 2D array to process. Also useful to set to 2 when loading a 2D OME-Zarr that is saved as (size_x, size_y).

TYPE: int DEFAULT: 3

overwrite

If True, overwrite the task output.

TYPE: bool DEFAULT: True

Source code in fractal_tasks_core/tasks/napari_workflows_wrapper.py
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
@validate_call
def napari_workflows_wrapper(
    *,
    # Fractal parameters
    zarr_url: str,
    # Core parameters
    workflow_file: str,
    input_specs: dict[str, NapariWorkflowsInput],
    output_specs: dict[str, NapariWorkflowsOutput],
    input_ROI_table: str = "FOV_ROI_table",
    level: int = 0,
    # Advanced parameters
    relabeling: bool = True,
    expected_dimensions: int = 3,
    overwrite: bool = True,
):
    """
    Run a napari-workflow on the ROIs of a single OME-NGFF image.

    This task takes images and labels and runs a napari-workflow on them that
    can produce a label and tables as output.

    Examples of allowed entries for `input_specs` and `output_specs`:

    ```
    input_specs = {
        "in_1": {"type": "image", "channel": {"wavelength_id": "A01_C02"}},
        "in_2": {"type": "image", "channel": {"label": "DAPI"}},
        "in_3": {"type": "label", "label_name": "label_DAPI"},
    }

    output_specs = {
        "out_1": {"type": "label", "label_name": "label_DAPI_new"},
        "out_2": {"type": "dataframe", "table_name": "measurements"},
    }
    ```

    Args:
        zarr_url: Path or url to the individual OME-Zarr image to be processed.
            (standard argument for Fractal tasks, managed by Fractal server).
        workflow_file: Absolute path to napari-workflows YAML file
        input_specs: A dictionary of `NapariWorkflowsInput` values.
        output_specs: A dictionary of `NapariWorkflowsOutput` values.
        input_ROI_table: Name of the ROI table over which the task loops to
            apply napari workflows.
            Examples:
            `FOV_ROI_table`
            => loop over the field of views;
            `organoid_ROI_table`
            => loop over the organoid ROI table (generated by another task);
            `well_ROI_table`
            => process the whole well as one image.
        level: Pyramid level of the image to be used as input for
            napari-workflows. Choose `0` to process at full resolution.
            Levels > 0 are currently only supported for workflows that only
            have intensity images as input and only produce a label images as
            output.
        relabeling: If `True`, apply relabeling so that label values are
            unique across all ROIs in the well.
        expected_dimensions: Expected dimensions (either `2` or `3`). Useful
            when loading 2D images that are stored in a 3D array with shape
            `(1, size_x, size_y)` [which is the default way Fractal stores 2D
            images], but you want to make sure the napari workflow gets a 2D
            array to process. Also useful to set to `2` when loading a 2D
            OME-Zarr that is saved as `(size_x, size_y)`.
        overwrite: If `True`, overwrite the task output.
    """
    wf: napari_workflows.Worfklow = load_workflow(workflow_file)
    logger.info(f"Loaded workflow from {workflow_file}")

    # Validation of input/output specs
    if not (set(wf.leafs()) <= set(output_specs.keys())):
        msg = f"Some item of {wf.leafs()=} is not part of {output_specs=}."
        logger.warning(msg)
    if not (set(wf.roots()) <= set(input_specs.keys())):
        msg = f"Some item of {wf.roots()=} is not part of {input_specs=}."
        logger.error(msg)
        raise ValueError(msg)
    list_outputs = sorted(output_specs.keys())

    # Characterization of workflow and scope restriction
    input_types = [in_params.type for (name, in_params) in input_specs.items()]
    output_types = [
        out_params.type for (name, out_params) in output_specs.items()
    ]
    are_inputs_all_images = set(input_types) == {"image"}
    are_outputs_all_labels = set(output_types) == {"label"}
    are_outputs_all_dataframes = set(output_types) == {"dataframe"}
    is_labeling_workflow = are_inputs_all_images and are_outputs_all_labels
    is_measurement_only_workflow = are_outputs_all_dataframes
    # Level-related constraint
    logger.info(f"This workflow acts at {level=}")
    logger.info(
        f"Is the current workflow a labeling one? {is_labeling_workflow}"
    )
    if level > 0 and not is_labeling_workflow:
        msg = (
            f"{level=}>0 is currently only accepted for labeling workflows, "
            "i.e. those going from image(s) to label(s)"
        )
        logger.error(msg)
        raise OutOfTaskScopeError(msg)
    # Relabeling-related (soft) constraint
    if is_measurement_only_workflow and relabeling:
        logger.warning(
            "This is a measurement-output-only workflow, setting "
            "relabeling=False."
        )
        relabeling = False
    if relabeling:
        max_label_for_relabeling = 0

    label_dtype = np.uint32

    # Read ROI table
    ROI_table = ad.read_zarr(f"{zarr_url}/tables/{input_ROI_table}")

    # Load image metadata
    ngff_image_meta = load_NgffImageMeta(zarr_url)
    num_levels = ngff_image_meta.num_levels
    coarsening_xy = ngff_image_meta.coarsening_xy

    # Read pixel sizes from zattrs file
    full_res_pxl_sizes_zyx = ngff_image_meta.get_pixel_sizes_zyx(level=0)

    # Create list of indices for 3D FOVs spanning the entire Z direction
    list_indices = convert_ROI_table_to_indices(
        ROI_table,
        level=level,
        coarsening_xy=coarsening_xy,
        full_res_pxl_sizes_zyx=full_res_pxl_sizes_zyx,
    )
    check_valid_ROI_indices(list_indices, input_ROI_table)
    num_ROIs = len(list_indices)
    logger.info(
        f"Completed reading ROI table {input_ROI_table},"
        f" found {num_ROIs} ROIs."
    )

    # Input preparation: "image" type
    image_inputs = [
        (name, in_params)
        for (name, in_params) in input_specs.items()
        if in_params.type == "image"
    ]
    input_image_arrays = {}
    if image_inputs:
        img_array = da.from_zarr(f"{zarr_url}/{level}")
        # Loop over image inputs and assign corresponding channel of the image
        for name, params in image_inputs:
            channel = get_channel_from_image_zarr(
                image_zarr_path=zarr_url,
                wavelength_id=params.channel.wavelength_id,
                label=params.channel.label,
            )
            channel_index = channel.index
            input_image_arrays[name] = img_array[channel_index]

            # Handle dimensions
            shape = input_image_arrays[name].shape
            if expected_dimensions == 3 and shape[0] == 1:
                logger.warning(
                    f"Input {name} has shape {shape} "
                    f"but {expected_dimensions=}"
                )
            if expected_dimensions == 2:
                if len(shape) == 2:
                    # We already load the data as a 2D array
                    pass
                elif shape[0] == 1:
                    input_image_arrays[name] = input_image_arrays[name][
                        0, :, :
                    ]
                else:
                    msg = (
                        f"Input {name} has shape {shape} "
                        f"but {expected_dimensions=}"
                    )
                    logger.error(msg)
                    raise ValueError(msg)
            logger.info(f"Prepared input with {name=} and {params=}")
        logger.info(f"{input_image_arrays=}")

    # Input preparation: "label" type
    label_inputs = [
        (name, in_params)
        for (name, in_params) in input_specs.items()
        if in_params.type == "label"
    ]
    if label_inputs:
        # Set target_shape for upscaling labels
        if not image_inputs:
            logger.warning(
                f"{len(label_inputs)=} but num_image_inputs=0. "
                "Label array(s) will not be upscaled."
            )
            upscale_labels = False
        else:
            target_shape = list(input_image_arrays.values())[0].shape
            upscale_labels = True
        # Loop over label inputs and load corresponding (upscaled) image
        input_label_arrays = {}
        for name, params in label_inputs:
            label_name = params.label_name
            label_array_raw = da.from_zarr(
                f"{zarr_url}/labels/{label_name}/{level}"
            )
            input_label_arrays[name] = label_array_raw

            # Handle dimensions
            shape = input_label_arrays[name].shape
            if expected_dimensions == 3 and shape[0] == 1:
                logger.warning(
                    f"Input {name} has shape {shape} "
                    f"but {expected_dimensions=}"
                )
            if expected_dimensions == 2:
                if len(shape) == 2:
                    # We already load the data as a 2D array
                    pass
                elif shape[0] == 1:
                    input_label_arrays[name] = input_label_arrays[name][
                        0, :, :
                    ]
                else:
                    msg = (
                        f"Input {name} has shape {shape} "
                        f"but {expected_dimensions=}"
                    )
                    logger.error(msg)
                    raise ValueError(msg)

            if upscale_labels:
                # Check that dimensionality matches the image
                if len(input_label_arrays[name].shape) != len(target_shape):
                    raise ValueError(
                        f"Label {name} has shape "
                        f"{input_label_arrays[name].shape}. "
                        "But the corresponding image has shape "
                        f"{target_shape}. Those dimensionalities do not "
                        f"match. Is {expected_dimensions=} the correct "
                        "setting?"
                    )
                if expected_dimensions == 3:
                    upscaling_axes = [1, 2]
                else:
                    upscaling_axes = [0, 1]
                input_label_arrays[name] = upscale_array(
                    array=input_label_arrays[name],
                    target_shape=target_shape,
                    axis=upscaling_axes,
                    pad_with_zeros=True,
                )

            logger.info(f"Prepared input with {name=} and {params=}")
        logger.info(f"{input_label_arrays=}")

    # Output preparation: "label" type
    label_outputs = [
        (name, out_params)
        for (name, out_params) in output_specs.items()
        if out_params.type == "label"
    ]
    if label_outputs:
        # Preliminary scope checks
        if len(label_outputs) > 1:
            raise OutOfTaskScopeError(
                "Multiple label outputs would break label-inputs-only "
                f"workflows (found {len(label_outputs)=})."
            )
        if len(label_outputs) > 1 and relabeling:
            raise OutOfTaskScopeError(
                "Multiple label outputs would break relabeling in labeling+"
                f"measurement workflows (found {len(label_outputs)=})."
            )

        # We only support two cases:
        # 1. If there exist some input images, then use the first one to
        #    determine output-label array properties
        # 2. If there are no input images, but there are input labels, then (A)
        #    re-load the pixel sizes and re-build ROI indices, and (B) use the
        #    first input label to determine output-label array properties
        if image_inputs:
            reference_array = list(input_image_arrays.values())[0]
        elif label_inputs:
            reference_array = list(input_label_arrays.values())[0]
            # Re-load pixel size, matching to the correct level
            input_label_name = label_inputs[0][1].label_name
            ngff_label_image_meta = load_NgffImageMeta(
                f"{zarr_url}/labels/{input_label_name}"
            )
            full_res_pxl_sizes_zyx = ngff_label_image_meta.get_pixel_sizes_zyx(
                level=0
            )
            # Create list of indices for 3D FOVs spanning the whole Z direction
            list_indices = convert_ROI_table_to_indices(
                ROI_table,
                level=level,
                coarsening_xy=coarsening_xy,
                full_res_pxl_sizes_zyx=full_res_pxl_sizes_zyx,
            )
            check_valid_ROI_indices(list_indices, input_ROI_table)
            num_ROIs = len(list_indices)
            logger.info(
                f"Re-create ROI indices from ROI table {input_ROI_table}, "
                f"using {full_res_pxl_sizes_zyx=}. "
                "This is necessary because label-input-only workflows may "
                "have label inputs that are at a different resolution and "
                "are not upscaled."
            )
        else:
            msg = (
                "Missing image_inputs and label_inputs, we cannot assign"
                " label output properties"
            )
            raise OutOfTaskScopeError(msg)

        # Extract label properties from reference_array, and make sure they are
        # for three dimensions
        label_shape = reference_array.shape
        label_chunksize = reference_array.chunksize
        if len(label_shape) == 2 and len(label_chunksize) == 2:
            if expected_dimensions == 3:
                raise ValueError(
                    f"Something wrong: {label_shape=} but "
                    f"{expected_dimensions=}"
                )
            label_shape = (1, label_shape[0], label_shape[1])
            label_chunksize = (1, label_chunksize[0], label_chunksize[1])
        logger.info(f"{label_shape=}")
        logger.info(f"{label_chunksize=}")

        # Loop over label outputs and (1) set zattrs, (2) create zarr group
        output_label_zarr_groups: dict[str, Any] = {}
        for name, out_params in label_outputs:
            # (1a) Rescale OME-NGFF datasets (relevant for level>0)
            if not ngff_image_meta.multiscale.axes[0].name == "c":
                raise ValueError(
                    "Cannot set `remove_channel_axis=True` for multiscale "
                    f"metadata with axes={ngff_image_meta.multiscale.axes}. "
                    'First axis should have name "c".'
                )
            new_datasets = rescale_datasets(
                datasets=[
                    ds.model_dump()
                    for ds in ngff_image_meta.multiscale.datasets
                ],
                coarsening_xy=coarsening_xy,
                reference_level=level,
                remove_channel_axis=True,
            )

            # (1b) Prepare attrs for label group
            label_name = out_params.label_name
            label_attrs = {
                "image-label": {
                    "version": __OME_NGFF_VERSION__,
                    "source": {"image": "../../"},
                },
                "multiscales": [
                    {
                        "name": label_name,
                        "version": __OME_NGFF_VERSION__,
                        "axes": [
                            ax.model_dump()
                            for ax in ngff_image_meta.multiscale.axes
                            if ax.type != "channel"
                        ],
                        "datasets": new_datasets,
                    }
                ],
            }

            # (2) Prepare label group
            image_group = zarr.group(zarr_url)
            label_group = prepare_label_group(
                image_group,
                label_name,
                overwrite=overwrite,
                label_attrs=label_attrs,
                logger=logger,
            )
            logger.info(
                "Helper function `prepare_label_group` returned "
                f"{label_group=}"
            )

            # (3) Create zarr group at level=0
            store = zarr.storage.FSStore(f"{zarr_url}/labels/{label_name}/0")
            mask_zarr = zarr.create(
                shape=label_shape,
                chunks=label_chunksize,
                dtype=label_dtype,
                store=store,
                overwrite=overwrite,
                dimension_separator="/",
            )
            output_label_zarr_groups[name] = mask_zarr
            logger.info(f"Prepared output with {name=} and {out_params=}")
        logger.info(f"{output_label_zarr_groups=}")

    # Output preparation: "dataframe" type
    dataframe_outputs = [
        (name, out_params)
        for (name, out_params) in output_specs.items()
        if out_params.type == "dataframe"
    ]
    output_dataframe_lists: dict[str, list] = {}
    for name, out_params in dataframe_outputs:
        output_dataframe_lists[name] = []
        logger.info(f"Prepared output with {name=} and {out_params=}")
        logger.info(f"{output_dataframe_lists=}")

    #####

    for i_ROI, indices in enumerate(list_indices):
        s_z, e_z, s_y, e_y, s_x, e_x = indices[:]
        region = (slice(s_z, e_z), slice(s_y, e_y), slice(s_x, e_x))

        logger.info(f"ROI {i_ROI+1}/{num_ROIs}: {region=}")

        # Always re-load napari worfklow
        wf = load_workflow(workflow_file)

        # Set inputs
        for input_name in input_specs.keys():
            input_type = input_specs[input_name].type

            if input_type == "image":
                wf.set(
                    input_name,
                    load_region(
                        input_image_arrays[input_name],
                        region,
                        compute=True,
                        return_as_3D=False,
                    ),
                )
            elif input_type == "label":
                wf.set(
                    input_name,
                    load_region(
                        input_label_arrays[input_name],
                        region,
                        compute=True,
                        return_as_3D=False,
                    ),
                )

        # Get outputs
        outputs = wf.get(list_outputs)

        # Iterate first over dataframe outputs (to use the correct
        # max_label_for_relabeling, if needed)
        for ind_output, output_name in enumerate(list_outputs):
            if output_specs[output_name].type != "dataframe":
                continue
            df = outputs[ind_output]
            if relabeling:
                df["label"] += max_label_for_relabeling
                logger.info(
                    f'ROI {i_ROI+1}/{num_ROIs}: Relabeling "{name}" dataframe'
                    "output, with {max_label_for_relabeling=}"
                )

            # Append the new-ROI dataframe to the all-ROIs list
            output_dataframe_lists[output_name].append(df)

        # After all dataframe outputs, iterate over label outputs (which
        # actually can be only 0 or 1)
        for ind_output, output_name in enumerate(list_outputs):
            if output_specs[output_name].type != "label":
                continue
            mask = outputs[ind_output]

            # Check dimensions
            if len(mask.shape) != expected_dimensions:
                msg = (
                    f"Output {output_name} has shape {mask.shape} "
                    f"but {expected_dimensions=}"
                )
                logger.error(msg)
                raise ValueError(msg)
            elif expected_dimensions == 2:
                mask = np.expand_dims(mask, axis=0)

            # Sanity check: issue warning for non-consecutive labels
            unique_labels = np.unique(mask)
            num_unique_labels_in_this_ROI = len(unique_labels)
            if np.min(unique_labels) == 0:
                num_unique_labels_in_this_ROI -= 1
            num_labels_in_this_ROI = int(np.max(mask))
            if num_labels_in_this_ROI != num_unique_labels_in_this_ROI:
                logger.warning(
                    f'ROI {i_ROI+1}/{num_ROIs}: "{name}" label output has'
                    f"non-consecutive labels: {num_labels_in_this_ROI=} but"
                    f"{num_unique_labels_in_this_ROI=}"
                )

            if relabeling:
                mask[mask > 0] += max_label_for_relabeling
                logger.info(
                    f'ROI {i_ROI+1}/{num_ROIs}: Relabeling "{name}" label '
                    f"output, with {max_label_for_relabeling=}"
                )
                max_label_for_relabeling += num_labels_in_this_ROI
                logger.info(
                    f"ROI {i_ROI+1}/{num_ROIs}: label-number update with "
                    f"{num_labels_in_this_ROI=}; "
                    f"new {max_label_for_relabeling=}"
                )

            da.array(mask).to_zarr(
                url=output_label_zarr_groups[output_name],
                region=region,
                compute=True,
                overwrite=overwrite,
            )
        logger.info(f"ROI {i_ROI+1}/{num_ROIs}: output handling complete")

    # Output handling: "dataframe" type (for each output, concatenate ROI
    # dataframes, clean up, and store in a AnnData table on-disk)
    for name, out_params in dataframe_outputs:
        table_name = out_params.table_name
        # Concatenate all FOV dataframes
        list_dfs = output_dataframe_lists[name]
        if len(list_dfs) == 0:
            measurement_table = ad.AnnData()
        else:
            df_well = pd.concat(list_dfs, axis=0, ignore_index=True)
            # Extract labels and drop them from df_well
            labels = pd.DataFrame(df_well["label"].astype(str))
            df_well.drop(labels=["label"], axis=1, inplace=True)
            # Convert all to float (warning: some would be int, in principle)
            measurement_dtype = np.float32
            df_well = df_well.astype(measurement_dtype)
            df_well.index = df_well.index.map(str)
            # Convert to anndata
            measurement_table = ad.AnnData(df_well, dtype=measurement_dtype)
            measurement_table.obs = labels

        # Write to zarr group
        image_group = zarr.group(zarr_url)
        table_attrs = dict(
            type="feature_table",
            region=dict(path=f"../labels/{out_params.label_name}"),
            instance_key="label",
        )
        write_table(
            image_group,
            table_name,
            measurement_table,
            overwrite=overwrite,
            table_attrs=table_attrs,
        )

    # Output handling: "label" type (for each output, build and write to disk
    # pyramid of coarser levels)
    for name, out_params in label_outputs:
        label_name = out_params.label_name
        build_pyramid(
            zarrurl=f"{zarr_url}/labels/{label_name}",
            overwrite=overwrite,
            num_levels=num_levels,
            coarsening_xy=coarsening_xy,
            chunksize=label_chunksize,
            aggregation_function=np.max,
        )