Skip to content

ngio.core

ngio.core

Core classes for the ngio library.

NGFFImage

ngio.core.NgffImage

A class to handle OME-NGFF images.

Source code in ngio/core/ngff_image.py
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
class NgffImage:
    """A class to handle OME-NGFF images."""

    def __init__(
        self, store: StoreLike, cache: bool = False, mode: AccessModeLiteral = "r+"
    ) -> None:
        """Initialize the NGFFImage in read mode."""
        self.store = store
        self._mode = mode
        self._group = open_group_wrapper(store=store, mode=self._mode)

        if self._group.read_only:
            self._mode = "r"

        self._image_meta = get_ngff_image_meta_handler(
            self._group, meta_mode="image", cache=cache
        )
        self._metadata_cache = cache
        self.tables = TableGroup(self._group, mode=self._mode)
        self.labels = LabelGroup(
            self._group, image_ref=self.get_image(), mode=self._mode
        )

        ngio_logger.info(f"Opened image located in store: {store}")
        ngio_logger.info(f"- Image number of levels: {self.num_levels}")

    def __repr__(self) -> str:
        """Get the string representation of the image."""
        name = "NGFFImage("
        len_name = len(name)
        return (
            f"{name}"
            f"group_path={self.group_path}, \n"
            f"{' ':>{len_name}}paths={self.levels_paths}, \n"
            f"{' ':>{len_name}}labels={self.labels.list()}, \n"
            f"{' ':>{len_name}}tables={self.tables.list()}, \n"
            ")"
        )

    @property
    def group(self) -> zarr.Group:
        """Get the group of the image."""
        return self._group

    @property
    def root_path(self) -> str:
        """Get the root path of the image."""
        return str(self._group.store.path)

    @property
    def group_path(self) -> str:
        """Get the path of the group."""
        root = self.root_path
        if root.endswith("/"):
            root = root[:-1]
        return f"{root}/{self._group.path}"

    @property
    def image_meta(self) -> ImageMeta:
        """Get the image metadata."""
        meta = self._image_meta.load_meta()
        assert isinstance(meta, ImageMeta)
        return meta

    @property
    def num_levels(self) -> int:
        """Get the number of levels in the image."""
        return self.image_meta.num_levels

    @property
    def levels_paths(self) -> list[str]:
        """Get the paths of the levels in the image."""
        return self.image_meta.levels_paths

    def get_image(
        self,
        *,
        path: str | None = None,
        pixel_size: PixelSize | None = None,
        highest_resolution: bool = True,
    ) -> Image:
        """Get an image handler for the given level.

        Args:
            path (str | None, optional): The path to the level.
            pixel_size (tuple[float, ...] | list[float] | None, optional): The pixel
                size of the level.
            highest_resolution (bool, optional): Whether to get the highest
                resolution level

        Returns:
            ImageHandler: The image handler.
        """
        if path is not None or pixel_size is not None:
            highest_resolution = False

        image = Image(
            store=self._group,
            path=path,
            pixel_size=pixel_size,
            highest_resolution=highest_resolution,
            label_group=LabelGroup(self._group, image_ref=None, mode=self._mode),
            cache=self._metadata_cache,
            mode=self._mode,
        )
        ngio_logger.info(f"Opened image at path: {image.path}")
        ngio_logger.info(f"- {image.dimensions}")
        ngio_logger.info(f"- {image.pixel_size}")
        return image

    def _compute_percentiles(
        self, start_percentile: float, end_percentile: float
    ) -> tuple[list[float], list[float]]:
        """Compute the percentiles for the window.

        This will setup percentiles based values for the window of each channel.

        Args:
            start_percentile (int): The start percentile.
            end_percentile (int): The end percentile

        """
        meta = self.image_meta

        lowest_res_image = self.get_image(highest_resolution=True)
        lowest_res_shape = lowest_res_image.shape
        for path in self.levels_paths:
            image = self.get_image(path=path)
            if np.prod(image.shape) < np.prod(lowest_res_shape):
                lowest_res_shape = image.shape
                lowest_res_image = image

        num_c = lowest_res_image.dimensions.get("c", 1)

        if meta.omero is None:
            raise NotImplementedError(
                "OMERO metadata not found. " " Please add OMERO metadata to the image."
            )

        channel_list = meta.omero.channels
        if len(channel_list) != num_c:
            raise ValueError("The number of channels does not match the image.")

        starts, ends = [], []
        for c in range(num_c):
            data = lowest_res_image.get_array(c=c, mode="dask").ravel()
            _start_percentile, _end_percentile = da.percentile(
                data, [start_percentile, end_percentile], method="nearest"
            ).compute()

            starts.append(_start_percentile)
            ends.append(_end_percentile)

        return starts, ends

    def lazy_init_omero(
        self,
        labels: list[str] | int | None = None,
        wavelength_ids: list[str] | None = None,
        colors: list[str] | None = None,
        active: list[bool] | None = None,
        start_percentile: float | None = 1,
        end_percentile: float | None = 99,
        data_type: Any = np.uint16,
        consolidate: bool = True,
    ) -> None:
        """Set the OMERO metadata for the image.

        Args:
            labels (list[str] | int | None): The labels of the channels.
            wavelength_ids (list[str] | None): The wavelengths of the channels.
            colors (list[str] | None): The colors of the channels.
            active (list[bool] | None): Whether the channels are active.
            start_percentile (float | None): The start percentile for computing the data
                range. If None, the start is the same as the min value of the data type.
            end_percentile (float | None): The end percentile for for computing the data
                range. If None, the start is the same as the max value of the data type.
            data_type (Any): The data type of the image.
            consolidate (bool): Whether to consolidate the metadata.
        """
        if labels is None:
            ref = self.get_image()
            labels = ref.num_channels

        if start_percentile is not None and end_percentile is not None:
            start, end = self._compute_percentiles(
                start_percentile=start_percentile, end_percentile=end_percentile
            )
        elif start_percentile is None and end_percentile is None:
            raise ValueError("Both start and end percentiles cannot be None.")
        elif end_percentile is None and start_percentile is not None:
            raise ValueError(
                "End percentile cannot be None if start percentile is not."
            )
        else:
            start, end = None, None

        self.image_meta.lazy_init_omero(
            labels=labels,
            wavelength_ids=wavelength_ids,
            colors=colors,
            start=start,
            end=end,
            active=active,
            data_type=data_type,
        )

        if consolidate:
            self._image_meta.write_meta(self.image_meta)

    def update_omero_window(
        self,
        start_percentile: int = 1,
        end_percentile: int = 99,
        min_value: int | float | None = None,
        max_value: int | float | None = None,
    ) -> None:
        """Update the OMERO window.

        This will setup percentiles based values for the window of each channel.

        Args:
            start_percentile (int): The start percentile.
            end_percentile (int): The end percentile
            min_value (int | float | None): The minimum value of the window.
            max_value (int | float | None): The maximum value of the window.

        """
        start, ends = self._compute_percentiles(
            start_percentile=start_percentile, end_percentile=end_percentile
        )
        meta = self.image_meta
        ref_image = self.get_image()

        for func in [np.iinfo, np.finfo]:
            try:
                type_max = func(ref_image.on_disk_array.dtype).max
                type_min = func(ref_image.on_disk_array.dtype).min
                break
            except ValueError:
                continue
        else:
            raise ValueError("Data type not recognized.")

        if min_value is None:
            min_value = type_min
        if max_value is None:
            max_value = type_max

        num_c = ref_image.dimensions.get("c", 1)

        if meta.omero is None:
            raise NotImplementedError(
                "OMERO metadata not found. " " Please add OMERO metadata to the image."
            )

        channel_list = meta.omero.channels
        if len(channel_list) != num_c:
            raise ValueError("The number of channels does not match the image.")

        if len(channel_list) != len(start):
            raise ValueError("The number of channels does not match the image.")

        for c, (channel, s, e) in enumerate(
            zip(channel_list, start, ends, strict=True)
        ):
            channel.channel_visualisation.start = s
            channel.channel_visualisation.end = e
            channel.channel_visualisation.min = min_value
            channel.channel_visualisation.max = max_value

            ngio_logger.info(
                f"Updated window for channel {channel.label}. "
                f"Start: {start_percentile}, End: {end_percentile}"
            )
            meta.omero.channels[c] = channel

        self._image_meta.write_meta(meta)

    def derive_new_image(
        self,
        store: StoreLike,
        name: str,
        overwrite: bool = True,
        copy_labels: bool = False,
        copy_tables: bool = False,
        **kwargs: dict,
    ) -> "NgffImage":
        """Derive a new image from the current image.

        Args:
            store (StoreLike): The store to create the new image in.
            name (str): The name of the new image.
            overwrite (bool): Whether to overwrite the image if it exists
            copy_labels (bool): Whether to copy the labels from the current image
                to the new image.
            copy_tables (bool): Whether to copy the tables from the current image
                to the new image.
            **kwargs: Additional keyword arguments.
                Follow the same signature as `create_empty_ome_zarr_image`.

        Returns:
            NgffImage: The new image.
        """
        image_0 = self.get_image(highest_resolution=True)

        # Get the channel information if it exists
        omero = self.image_meta.omero
        if omero is not None:
            channels = omero.channels
            omero_kwargs = omero.extra_fields
        else:
            channels = []
            omero_kwargs = {}

        default_kwargs = {
            "store": store,
            "on_disk_shape": image_0.on_disk_shape,
            "chunks": image_0.on_disk_array.chunks,
            "dtype": image_0.on_disk_array.dtype,
            "on_disk_axis": image_0.dataset.on_disk_axes_names,
            "pixel_sizes": image_0.pixel_size,
            "xy_scaling_factor": self.image_meta.xy_scaling_factor,
            "z_scaling_factor": self.image_meta.z_scaling_factor,
            "time_spacing": image_0.dataset.time_spacing,
            "time_units": image_0.dataset.time_axis_unit,
            "levels": self.num_levels,
            "name": name,
            "channel_labels": image_0.channel_labels,
            "channel_wavelengths": [ch.wavelength_id for ch in channels],
            "channel_visualization": [ch.channel_visualisation for ch in channels],
            "omero_kwargs": omero_kwargs,
            "overwrite": overwrite,
            "version": self.image_meta.version,
        }

        default_kwargs.update(kwargs)

        create_empty_ome_zarr_image(
            **default_kwargs,
        )

        new_image = NgffImage(store=store)

        if copy_tables:
            # TODO: to be refactored when the table location is changed in the spec
            source_tables_group = self.tables._table_group

            if source_tables_group is None:
                raise ValueError("No tables group found in the source image.")

            zarr.copy(source=source_tables_group, dest=new_image.group)

            # Reopen the image to get the new tables
            new_image = NgffImage(store=store)

        if copy_labels:
            # TODO: to be refactored when the label location is changed in the spec
            source_labels_group = self.labels._label_group

            if source_labels_group is None:
                raise ValueError("No labels group found in the source image.")

            zarr.copy(source=source_labels_group, dest=new_image.group)

            # Reopen the image to get the new labels
            new_image = NgffImage(store=store)

        return new_image

group: zarr.Group property

Get the group of the image.

group_path: str property

Get the path of the group.

image_meta: ImageMeta property

Get the image metadata.

levels_paths: list[str] property

Get the paths of the levels in the image.

num_levels: int property

Get the number of levels in the image.

root_path: str property

Get the root path of the image.

__init__(store: StoreLike, cache: bool = False, mode: AccessModeLiteral = 'r+') -> None

Initialize the NGFFImage in read mode.

Source code in ngio/core/ngff_image.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
def __init__(
    self, store: StoreLike, cache: bool = False, mode: AccessModeLiteral = "r+"
) -> None:
    """Initialize the NGFFImage in read mode."""
    self.store = store
    self._mode = mode
    self._group = open_group_wrapper(store=store, mode=self._mode)

    if self._group.read_only:
        self._mode = "r"

    self._image_meta = get_ngff_image_meta_handler(
        self._group, meta_mode="image", cache=cache
    )
    self._metadata_cache = cache
    self.tables = TableGroup(self._group, mode=self._mode)
    self.labels = LabelGroup(
        self._group, image_ref=self.get_image(), mode=self._mode
    )

    ngio_logger.info(f"Opened image located in store: {store}")
    ngio_logger.info(f"- Image number of levels: {self.num_levels}")

__repr__() -> str

Get the string representation of the image.

Source code in ngio/core/ngff_image.py
45
46
47
48
49
50
51
52
53
54
55
56
def __repr__(self) -> str:
    """Get the string representation of the image."""
    name = "NGFFImage("
    len_name = len(name)
    return (
        f"{name}"
        f"group_path={self.group_path}, \n"
        f"{' ':>{len_name}}paths={self.levels_paths}, \n"
        f"{' ':>{len_name}}labels={self.labels.list()}, \n"
        f"{' ':>{len_name}}tables={self.tables.list()}, \n"
        ")"
    )

derive_new_image(store: StoreLike, name: str, overwrite: bool = True, copy_labels: bool = False, copy_tables: bool = False, **kwargs: dict) -> NgffImage

Derive a new image from the current image.

Parameters:

  • store (StoreLike) –

    The store to create the new image in.

  • name (str) –

    The name of the new image.

  • overwrite (bool, default: True ) –

    Whether to overwrite the image if it exists

  • copy_labels (bool, default: False ) –

    Whether to copy the labels from the current image to the new image.

  • copy_tables (bool, default: False ) –

    Whether to copy the tables from the current image to the new image.

  • **kwargs (dict, default: {} ) –

    Additional keyword arguments. Follow the same signature as create_empty_ome_zarr_image.

Returns:

Source code in ngio/core/ngff_image.py
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
def derive_new_image(
    self,
    store: StoreLike,
    name: str,
    overwrite: bool = True,
    copy_labels: bool = False,
    copy_tables: bool = False,
    **kwargs: dict,
) -> "NgffImage":
    """Derive a new image from the current image.

    Args:
        store (StoreLike): The store to create the new image in.
        name (str): The name of the new image.
        overwrite (bool): Whether to overwrite the image if it exists
        copy_labels (bool): Whether to copy the labels from the current image
            to the new image.
        copy_tables (bool): Whether to copy the tables from the current image
            to the new image.
        **kwargs: Additional keyword arguments.
            Follow the same signature as `create_empty_ome_zarr_image`.

    Returns:
        NgffImage: The new image.
    """
    image_0 = self.get_image(highest_resolution=True)

    # Get the channel information if it exists
    omero = self.image_meta.omero
    if omero is not None:
        channels = omero.channels
        omero_kwargs = omero.extra_fields
    else:
        channels = []
        omero_kwargs = {}

    default_kwargs = {
        "store": store,
        "on_disk_shape": image_0.on_disk_shape,
        "chunks": image_0.on_disk_array.chunks,
        "dtype": image_0.on_disk_array.dtype,
        "on_disk_axis": image_0.dataset.on_disk_axes_names,
        "pixel_sizes": image_0.pixel_size,
        "xy_scaling_factor": self.image_meta.xy_scaling_factor,
        "z_scaling_factor": self.image_meta.z_scaling_factor,
        "time_spacing": image_0.dataset.time_spacing,
        "time_units": image_0.dataset.time_axis_unit,
        "levels": self.num_levels,
        "name": name,
        "channel_labels": image_0.channel_labels,
        "channel_wavelengths": [ch.wavelength_id for ch in channels],
        "channel_visualization": [ch.channel_visualisation for ch in channels],
        "omero_kwargs": omero_kwargs,
        "overwrite": overwrite,
        "version": self.image_meta.version,
    }

    default_kwargs.update(kwargs)

    create_empty_ome_zarr_image(
        **default_kwargs,
    )

    new_image = NgffImage(store=store)

    if copy_tables:
        # TODO: to be refactored when the table location is changed in the spec
        source_tables_group = self.tables._table_group

        if source_tables_group is None:
            raise ValueError("No tables group found in the source image.")

        zarr.copy(source=source_tables_group, dest=new_image.group)

        # Reopen the image to get the new tables
        new_image = NgffImage(store=store)

    if copy_labels:
        # TODO: to be refactored when the label location is changed in the spec
        source_labels_group = self.labels._label_group

        if source_labels_group is None:
            raise ValueError("No labels group found in the source image.")

        zarr.copy(source=source_labels_group, dest=new_image.group)

        # Reopen the image to get the new labels
        new_image = NgffImage(store=store)

    return new_image

get_image(*, path: str | None = None, pixel_size: PixelSize | None = None, highest_resolution: bool = True) -> Image

Get an image handler for the given level.

Parameters:

  • path (str | None, default: None ) –

    The path to the level.

  • pixel_size (tuple[float, ...] | list[float] | None, default: None ) –

    The pixel size of the level.

  • highest_resolution (bool, default: True ) –

    Whether to get the highest resolution level

Returns:

  • ImageHandler ( Image ) –

    The image handler.

Source code in ngio/core/ngff_image.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def get_image(
    self,
    *,
    path: str | None = None,
    pixel_size: PixelSize | None = None,
    highest_resolution: bool = True,
) -> Image:
    """Get an image handler for the given level.

    Args:
        path (str | None, optional): The path to the level.
        pixel_size (tuple[float, ...] | list[float] | None, optional): The pixel
            size of the level.
        highest_resolution (bool, optional): Whether to get the highest
            resolution level

    Returns:
        ImageHandler: The image handler.
    """
    if path is not None or pixel_size is not None:
        highest_resolution = False

    image = Image(
        store=self._group,
        path=path,
        pixel_size=pixel_size,
        highest_resolution=highest_resolution,
        label_group=LabelGroup(self._group, image_ref=None, mode=self._mode),
        cache=self._metadata_cache,
        mode=self._mode,
    )
    ngio_logger.info(f"Opened image at path: {image.path}")
    ngio_logger.info(f"- {image.dimensions}")
    ngio_logger.info(f"- {image.pixel_size}")
    return image

lazy_init_omero(labels: list[str] | int | None = None, wavelength_ids: list[str] | None = None, colors: list[str] | None = None, active: list[bool] | None = None, start_percentile: float | None = 1, end_percentile: float | None = 99, data_type: Any = np.uint16, consolidate: bool = True) -> None

Set the OMERO metadata for the image.

Parameters:

  • labels (list[str] | int | None, default: None ) –

    The labels of the channels.

  • wavelength_ids (list[str] | None, default: None ) –

    The wavelengths of the channels.

  • colors (list[str] | None, default: None ) –

    The colors of the channels.

  • active (list[bool] | None, default: None ) –

    Whether the channels are active.

  • start_percentile (float | None, default: 1 ) –

    The start percentile for computing the data range. If None, the start is the same as the min value of the data type.

  • end_percentile (float | None, default: 99 ) –

    The end percentile for for computing the data range. If None, the start is the same as the max value of the data type.

  • data_type (Any, default: uint16 ) –

    The data type of the image.

  • consolidate (bool, default: True ) –

    Whether to consolidate the metadata.

Source code in ngio/core/ngff_image.py
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
def lazy_init_omero(
    self,
    labels: list[str] | int | None = None,
    wavelength_ids: list[str] | None = None,
    colors: list[str] | None = None,
    active: list[bool] | None = None,
    start_percentile: float | None = 1,
    end_percentile: float | None = 99,
    data_type: Any = np.uint16,
    consolidate: bool = True,
) -> None:
    """Set the OMERO metadata for the image.

    Args:
        labels (list[str] | int | None): The labels of the channels.
        wavelength_ids (list[str] | None): The wavelengths of the channels.
        colors (list[str] | None): The colors of the channels.
        active (list[bool] | None): Whether the channels are active.
        start_percentile (float | None): The start percentile for computing the data
            range. If None, the start is the same as the min value of the data type.
        end_percentile (float | None): The end percentile for for computing the data
            range. If None, the start is the same as the max value of the data type.
        data_type (Any): The data type of the image.
        consolidate (bool): Whether to consolidate the metadata.
    """
    if labels is None:
        ref = self.get_image()
        labels = ref.num_channels

    if start_percentile is not None and end_percentile is not None:
        start, end = self._compute_percentiles(
            start_percentile=start_percentile, end_percentile=end_percentile
        )
    elif start_percentile is None and end_percentile is None:
        raise ValueError("Both start and end percentiles cannot be None.")
    elif end_percentile is None and start_percentile is not None:
        raise ValueError(
            "End percentile cannot be None if start percentile is not."
        )
    else:
        start, end = None, None

    self.image_meta.lazy_init_omero(
        labels=labels,
        wavelength_ids=wavelength_ids,
        colors=colors,
        start=start,
        end=end,
        active=active,
        data_type=data_type,
    )

    if consolidate:
        self._image_meta.write_meta(self.image_meta)

update_omero_window(start_percentile: int = 1, end_percentile: int = 99, min_value: int | float | None = None, max_value: int | float | None = None) -> None

Update the OMERO window.

This will setup percentiles based values for the window of each channel.

Parameters:

  • start_percentile (int, default: 1 ) –

    The start percentile.

  • end_percentile (int, default: 99 ) –

    The end percentile

  • min_value (int | float | None, default: None ) –

    The minimum value of the window.

  • max_value (int | float | None, default: None ) –

    The maximum value of the window.

Source code in ngio/core/ngff_image.py
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
def update_omero_window(
    self,
    start_percentile: int = 1,
    end_percentile: int = 99,
    min_value: int | float | None = None,
    max_value: int | float | None = None,
) -> None:
    """Update the OMERO window.

    This will setup percentiles based values for the window of each channel.

    Args:
        start_percentile (int): The start percentile.
        end_percentile (int): The end percentile
        min_value (int | float | None): The minimum value of the window.
        max_value (int | float | None): The maximum value of the window.

    """
    start, ends = self._compute_percentiles(
        start_percentile=start_percentile, end_percentile=end_percentile
    )
    meta = self.image_meta
    ref_image = self.get_image()

    for func in [np.iinfo, np.finfo]:
        try:
            type_max = func(ref_image.on_disk_array.dtype).max
            type_min = func(ref_image.on_disk_array.dtype).min
            break
        except ValueError:
            continue
    else:
        raise ValueError("Data type not recognized.")

    if min_value is None:
        min_value = type_min
    if max_value is None:
        max_value = type_max

    num_c = ref_image.dimensions.get("c", 1)

    if meta.omero is None:
        raise NotImplementedError(
            "OMERO metadata not found. " " Please add OMERO metadata to the image."
        )

    channel_list = meta.omero.channels
    if len(channel_list) != num_c:
        raise ValueError("The number of channels does not match the image.")

    if len(channel_list) != len(start):
        raise ValueError("The number of channels does not match the image.")

    for c, (channel, s, e) in enumerate(
        zip(channel_list, start, ends, strict=True)
    ):
        channel.channel_visualisation.start = s
        channel.channel_visualisation.end = e
        channel.channel_visualisation.min = min_value
        channel.channel_visualisation.max = max_value

        ngio_logger.info(
            f"Updated window for channel {channel.label}. "
            f"Start: {start_percentile}, End: {end_percentile}"
        )
        meta.omero.channels[c] = channel

    self._image_meta.write_meta(meta)